• Title/Summary/Keyword: Circular cone attachment

Search Result 2, Processing Time 0.018 seconds

Improvement of a High-volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment

  • Okuda, Tomoaki;Isobe, Ryoma
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.131-137
    • /
    • 2017
  • A cyclone is an effective tool to facilitate the collection of aerosol particles without using filters, and in cell exposure studies is able to collect a sufficient amount of aerosol particles to evaluate their adverse health effect. In this study, we examined two different methods to improve the aerosol particle collection efficiency of a cyclone. The individual and combined effects of reducing the surface roughness of the inner wall of the cyclone and of using a circular cone attachment were tested. The collection efficiency of particles of diameter $0.2{\mu}m$ was improved by approximately 10% when using a cyclone with a smoothened inner wall (average roughness $Ra=0.08{\mu}m$) compared with the original cyclone ($Ra=5.1{\mu}m$). A circular cone attachment placed between the bottom section of the cyclone and the top section of a collection bottle, resulted in improved collection of smaller particles without the attachment. The 50% cutoff diameter of the modified cyclone (combined use of smoothened inner wall and attachment) was $0.23{\mu}m$ compared to $0.28{\mu}m$ in the original model. The combined use of these two techniques resulted in improved collection efficiency of aerosol particles.

Development of a Robotic System for Measuring Hole Displacement Using Contact-Type Displacement Sensors (접촉식 변위센서를 이용한 홀 변위 측정 로봇시스템 개발)

  • Kang, Hee-Jun;Kweon, Min-Ho;Suh, Young-Soo;Ro, Young-Shick
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.79-84
    • /
    • 2008
  • For the precision measurement of industrial products, the location of holes inside the products, if they exist, are often selected as feature points. The measurement of hole location would be performed by vision and laser-vision sensor. However, the usage of those sensors is limited in case of big change of light intensity and reflective shiny surface of the products. In order to overcome the difficulties, we have developed a hole displacement measuring device using contact-type displacement sensors (LVDTs). The developed measurement device attached to a robot measures small displacement of a hole by allowing its X-Y movement due to the contact forces between the hole and its own circular cone. The developed device consists of three plates which are connected in series for its own function. The first plate is used for the attachment to an industrial robot with ball-bush joints and springs. The second and third plates allow X-Y direction as LM guides. The bottom of the third plate is designed that various circular cones can be easily attached according to the shape of the hole. The developed system was implemented for its effectiveness that its measurement accuracy is less than 0.05mm.