• Title/Summary/Keyword: Circular Cylinder

Search Result 757, Processing Time 0.022 seconds

Movement of a Horizontal Vortex Ring in a Circular Cylinder (원통 내 수평 보텍스 링의 거동)

  • Suh, Yong-Kweon;Yeo, Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.652-658
    • /
    • 2004
  • In this paper, we report the numerical and experimental solutions of the axi-symmetric flows in the axial plane driven by an impingement of fluid from the bottom wall of a circular cylinder. We managed to visualize successfully the flow pattern shown on the vertical plane through the container axis. The numerical results are shown to compare well with the experimental results for the case of infinity Rossby number. The satisfactory agreement between the two results was possible when in the numerics the free surface was treated as a solid wall so that a no-slip condition was applied on the surface. The numerical solutions reveal that inertial oscillation plays an important role at small Rossby numbers, or at a larger background rotation.

ANALYSIS OF ROTARY OSCILLATION CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATIONS (2차원 Navier-Stokes식을 이용한 회전 진동하는 원형실린더 주위 유동해석)

  • Lee, M.K.;Kim, J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.27-33
    • /
    • 2009
  • In this paper, the flow past a rotary oscillating circular cylinder is simulated. The high-order and high-resolution numerical schemes with the characteristic boundary conditions are used for the compressible Navier-Stokes equation. The frequencies of rotating oscillation are $0.19\;{\leq}\;S_f\;{\leq}\;0.25$ for the maximum angular $\theta_{max}=10^{\circ}$ and $17^{\circ}$. The flow conditions are Mach number of 0.3 and Reynolds number of 1000. At Lock-on and Non-lock-on region which are defined by the relation between the vortex shedding frequency and the oscillating frequency, the drag and lift coefficient are analyzed.

  • PDF

Numerical Study on Inertial Oscillations in the Spin-up of Fluid in a Circular Cylinder (원통 내 스핀업 유동에서의 관성진동에 관한 수치해석적 연구)

  • 서용권
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.9-19
    • /
    • 2001
  • In this paper we present the aspect of inertial oscillation typically observed in the spin-up of fluids at low Rossby numbers in a circular cylinder. Numerical computations for the quasi three-dimensional equation as well as one-dimensional equation are performed to estimate the predictability of the one-dimensional equation with Ekman pumping/suction models. It is assumed that the discrepancy between the two results may be attributed to the inertial oscillation The detailed analysis to the numerical results reveals that the axial plane is dominated by a comparatively strong oscillatory flows caused by the inertial oscillation. In view of the fact that the time-averaged flow field however agrees to the Taylor-Proudman theorem, it is recommended that further analysis is needed to obtain an improved one-dimensional model like the Reynolds-averaged Navier-Stokes equation for turbulent flows.

  • PDF

Hydrodynamic Forces Characteristics of a Circular Cylinder with a Damping Plate (감쇠판이 부착된 원기둥의 동유체력 특성)

  • Cho, Il-Hyoung
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • The radiation of water waves by a heaving truncated circular cylinder with damping plate is solved in the frame of the three-dimensional linear potential theory. The damping plate has a distinct advantage in reducing the motion response of a floating circular cylinder by increasing the added mass and the damping coefficient. Using the matched eigenfunction expansion method, the characteristics of hydrodynamic added mass and the damping coefficient are investigated with various system parameters, such as the radius and submergence depth of the damping plate. It is found that both added mass and the damping coefficient are significantly increased due to the arranged features of the larger damping plate with shallow submergence, which are positive factors as a motion reduction device of the floating offshore platform. Also the numerical results for an oscillating submerged disk show that the added mass is negative and that the damping coefficient has a peak value at resonant frequency when submergence depth is sufficiently small.

COMPARISONS BETWEEN MEASURED AND COMPUTED FLUID FLOWS AND HEAT TRANSFER IN RECTANGULAR DUCT SYSTEM (사각 덕트 계통에서 유동과 열전달의 수치계산과 실험의 비교)

  • Yoon Y.H.;Kim K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.67-74
    • /
    • 2005
  • Fluid flow and heat transfer in rectangular duct system are measured and computed by commercial software of Star-CD for comparison between them. Three rectangular systems are investigated in this study. Those are a rectangular duct with 90 degree bended elbow, a rectangular duct with two branchs, and a circular cylinder in a rectangular duct. But heat transfer is studied only for last system. These investigations show us that the numerical solutions predict satisfactorily design factors (K-factor for the elbowed duct, distributions of flow rates into each branch from a duct, and Nusselt number around circular cylinder) even though there are some disagreements in velocity profiles and turbulent kinetic energy.

  • PDF

Numerical Analysis for the Unsteady Laminar Flow and Heat Transfer Around a Circular Cylinder (원주 주위의 비정상 층류유동과 열전달에 대한 수치해석)

  • 조석호;남청도;부정숙
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.64-72
    • /
    • 1991
  • The unsteady, two-dimensional laminar flow and heat transfer of an incompressible, constant-property fluid flowing around a circular cylinder are numerically analyzed. The Navier-Strokes equation and the energy equation are solved by the finite difference method. The range of the Reynolds number is 10 to 100 and the Prandtl number considered is 0.7. The contours of the flow pattern, equi-vorticity line and isotherm pattern around a circular cylinder are shown. Also, numerical solutions of the surface vorticity, pressure coefficient, drag coefficient, local Nusselt number and mean Nusselt number are obtained. The numerical results for the final time fo calculation are compared with the other available experimental and theoretical results for the steady state and are found to be in good agreement with them.

  • PDF

Acoustic Scattering from Circular Cylinder with Neighborhood Structure (주변 구조물을 포함한 원형 실린더의 음향 산란)

  • Cho, Yo-Han;Seo, Hee-Seon;Kwon, O-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1096-1099
    • /
    • 2007
  • Hydrophone system has necessarily additional structures to resist installation and operation for military usage. In this paper, we assume that the hydrophone is a rigid circular cylinder and the neighborhood structure is a perfect reflector. Scattering fields by hydrophone and neighborhood structure are investigated to use a boundary element analysis program, SYSNOISE, which has an acoustic analysis capability. The pressure fields around circular cylinder with respect to the angle are evaluated.

  • PDF

The subtle effect of integral scale on the drag of a circular cylinder in turbulent cross flow

  • Younis, Nibras;Ting, David S.K.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.463-480
    • /
    • 2012
  • The effects of Reynolds number (Re), freestream turbulence intensity (Tu) and integral length scale (${\Lambda}$) on the drag coefficient ($C_d$) of a circular cylinder in cross flow were experimentally studied for $6.45{\times}10^3$ < Re < $1.82{\times}10^4$. With the help of orificed plates, Tu was fixed at approximately 0.5%, 5%, 7% and 9% and the normalized integral length scale (L/D) was varied from 0.35 to 1.05. Our turbulent results confirmed the general trend of decreasing $C_d$ with increasing Tu. The effectiveness of Tu in reducing $C_d$ is found to lessen with increasing ${\Lambda}$/D. Most interestingly, freestream turbulence of low Tu (${\approx}5%$) and large ${\Lambda}$/D (${\approx}1.05$) can increase the $C_d$ above the corresponding smooth flow value.

A study of Instability on Oscillating Laminar Premixed Flames (진동하는 층류예혼합화염의 불안정성에 관한 연구)

  • Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.4
    • /
    • pp.8-15
    • /
    • 2008
  • When a circular cylinder is placed at the center of a slot burner nozzle, once stable Woflhard-Parker type laminar lean premixed flame is changed to an oscillating flame with self-induced noise. The wrinkled flame surface showed the same pattern and frequency of the Karman vortex street at the downstream of a circular cylinder. The interaction of flame with Karman vortex street is observed to be responsible for flame oscillation. The measured flame oscillation frequency is very similar to the estimated Karman vortex shedding frequency based on the St-Re relationship of the flow past circular cylinder, which could be considered as a strong evidence for the interaction between laminar pre-mixed flame and a Karman vortex street. As Reynolds number increases oscillation frequency decreases and the self-induced noise level increases as well as the flame front is more severly wrinkled. This result suggests that the flame/vortex interaction becomes more active at higher Re.

  • PDF

Study of Nonlinear Wave Diffraction Using the 2-Dimensional Numerical Wave Tank (2차원 수치 파수조를 이용한 비선형파 산란의 연구)

  • 김용직
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.9-18
    • /
    • 1993
  • Numerical wave tank is a robust tool by which the nonlinear interactions between the body and the free-surface can be treated in time-domain. In this paper, a two-dimensional numerical wave tank based on the Spectral/Boundary-Element Method is developed, and applied successfully to the study of nonlinear wave diffraction around a submerged circular cylinder. Particularly, it is shown that the high-order wave components of significant wave height are developed in the lee-side of the cylinder and that these waves result in a negative drift force on the circular cylider.

  • PDF