• Title/Summary/Keyword: Circuitscape

Search Result 2, Processing Time 0.019 seconds

Connectivity Assessment Based on Circuit Theory for Suggestion of Ecological Corridor (생태축 제안을 위한 회로 이론 기초 연결성 평가)

  • Yoon, Eun-Joo;Kim, Eun-Young;Kim, Ji-Yeon;Lee, Dong Kun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.275-286
    • /
    • 2019
  • In order to prevent local extinction of organisms and to preserve biodiversity, it is important to ensure connectivity between habitats. Even if the habitat is exposed to various disturbance factors, it is possible to avoid or respond to disturbances if they are linked to other habitats. Habitat connectivity can be assessed from a variety of perspectives, but the importance of functional connectivity based on species movement has been emphasized in recent years due to the development of computational capabilities and related software. Among them, Circuitscape, which is a connectivity evaluation tool, has an advantage it can provide detailed reference data for the city planning because it maps ecological flows on individual grid based on circuit theory. Therefore, in this study, the functional connectivity of Suwon was evaluated by applying Circuitscape and then, the ecological corridor to be conserved and supplemented was suggested based on it. The results of this study are expected to effectively complement the methodology related ecological corridor/axis, which was previously provided only in the form of a diagram, and to be effective in management of development project and urban planning.

Evaluation of Priorities for Greening of Vacant Houses using Connectivity Modeling (연결성 모델링을 활용한 빈집 녹지화 우선순위 평가)

  • Lee, Hyun-Jung;Kim, Whee-Moon;Kim, Kyeong-Tae;Shin, Ji-Young;Park, Chang-Sug;Park, Hyun-Joo;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.1
    • /
    • pp.25-38
    • /
    • 2022
  • Urban problems are constantly occurring around the world due to rapid industrialization and population decline. In particular, as the number of vacant houses is gradually increasing as the population decreases, it is necessary to prepare countermeasures. A plan to utilize vacant houses has emerged to restore the natural environment of the urban ecosystem where forest destruction, damage to habitats of wild animals and plants, and disconnection have occurred due to large-scale development. Through connectivity analysis, it is possible to understand the overall ecosystem flow based on the movement of species and predict the effect when vacant houses are converted into green spaces. Therefore, this study analyzed the green area network to confirm the possibility of greening of vacant houses neglected in Jeonju based on circuit theory. Using Circuitscape and Least-cost path, we tried to identify the connectivity of green areas and propose an ecological axis based on the analysis. In order to apply the resistance values required for analysis based on previous studies, the 2020 subdivision land cover data were integrated into the major classification evaluation items. When the eight forests in the target site were analyzed as the standard, the overall connectivity and connectivity between forests in the area were high, so it is judged that the existing green areas can perform various functions, such as species movement and provision of habitats. Based on the results of the connectivity analysis, the importance of vacant houses was calculated and the top 20 vacant houses were identified, and it was confirmed that the higher the ranking, the more positive the degree of landscape connectivity was when converted to green areas. In addition, it was confirmed that the results of analyzing the least-cost path based on the resistance values such as connectivity analysis and the existing conceptual map showed some differences when comparing the ecological axes in the form. As a result of checking the vacant houses corresponding to the relevant axis based on the width standards of the main and sub-green areas, a total of 30 vacant houses were included in the 200m width and 6 vacant houses in the 80m width. It is judged that the conversion of vacant houses to green space can contribute to biodiversity conservation as well as connectivity between habitats of species as it is coupled with improved green space connectivity. In addition, it is expected to help solve the problem of vacant houses in the future by showing the possibility of using vacant houses.