• Title/Summary/Keyword: Circuit analysis ability

Search Result 38, Processing Time 0.035 seconds

Implementation of Golf Swing Accuracy Analysis System using Smart Sensor (스마트 센서를 활용한 골프 스윙 정확도 분석시스템 구현)

  • Ju, Jae-han
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.2
    • /
    • pp.200-205
    • /
    • 2017
  • Modern sports are developing into sports science that incorporates science and various analytical simulation systems for improving records are being developed, and they are helping to improve actual game records. Therefore golf which is one of various sports events, has been popularized among the hobbyists and the general public and there is an increasing demand for correcting the movement attitude of the person. In response to these demands, many systems have been developed to analyze and correct golf swing postures. The golf swing accuracy analysis system analyzes the moments that can not be seen with the naked eye and guides them to understand easily. It can improve the golf swing motion through immediate feedback due to the visual effect. Using the knowledge of golf swing motion collected from golf swing video, we improved reliability. In addition, it provides the ability to visually check and analyze your golf swing video, allowing you to analyze each segment based on various golf swing classification methods.

Implementation on the Uroflowmetry System and Usefulness Estimation of the Uroflow Parameters (요류검사 시스템의 구현과 요류파라미터의 유용성 평가)

  • Han, B.H.;Jeong, D.U.;Kim, U.Y.;Bae, J.W.;Shon, J.M.;Kim, J.H.;Park, J.M.;Chung, M.K.;Jeon, G.R.
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.293-296
    • /
    • 2002
  • In this study, the object is a development on uroflowmetry system to detect a voiding symptom conveniently in home or hospital. The hardware was composed of mechanism and system circuit part, the software was divided into firmware and PC program part. The following experiment was performed to evaluate an ability of classification and fitness. First, the following parameters was calculated in each flow curve pattern. The parameters are MFR, AFR, VOL, VT, FT, and TMF. A significant difference among parameters was examined through a statistical analysis for extracted parameters between normal and abnormal group. In the next work, the following experimentation was performed to classify the voiding symptom. Analysis of congregate rate was examined to find out classification possibility about each symptom of BPH, voiding difficulty, detrusor failure and hyperreflexia, unstable bladder. The uroflow data with the above symptom was divided into normal and abnormal group using fuzzy classifier. and that was performed appending the other group again. Fuzzy classification result using MFR and AFR was superior by 89.6 % more than grouping evaluation including VOL.

  • PDF

Modeling of the friction in the tool-workpiece system in diamond burnishing process

  • Maximov, J.T.;Anchev, A.P.;Duncheva, G.V.
    • Coupled systems mechanics
    • /
    • v.4 no.4
    • /
    • pp.279-295
    • /
    • 2015
  • The article presents a theoretical-experimental approach developed for modeling the coefficient of sliding friction in the dynamic system tool-workpiece in slide diamond burnishing of low-alloy unhardened steels. The experimental setup, implemented on conventional lathe, includes a specially designed device, with a straight cantilever beam as body. The beam is simultaneously loaded by bending (from transverse slide friction force) and compression (from longitudinal burnishing force), which is a reason for geometrical nonlinearity. A method, based on the idea of separation of the variables (time and metric) before establishing the differential equation of motion, has been applied for dynamic modeling of the beam elastic curve. Between the longitudinal (burnishing force) and transverse (slide friction force) forces exists a correlation defined by Coulomb's law of sliding friction. On this basis, an analytical relationship between the beam deflection and the sought friction coefficient has been obtained. In order to measure the deflection of the beam, strain gauges connected in a "full bridge" type of circuit are used. A flexible adhesive is selected, which provides an opportunity for dynamic measurements through the constructed measuring system. The signal is proportional to the beam deflection and is fed to the analog input of USB DAQ board, from where the signal enters in a purposely created virtual instrument which is developed by means of Labview. The basic characteristic of the virtual instrument is the ability to record and visualize in a real time the measured deflection. The signal sampling frequency is chosen in accordance with Nyquist-Shannon sampling theorem. In order to obtain a regression model of the friction coefficient with the participation of the diamond burnishing process parameters, an experimental design with 55 experimental points is synthesized. A regression analysis and analysis of variance have been carried out. The influence of the factors on the friction coefficient is established using sections of the hyper-surface of the friction coefficient model with the hyper-planes.

Neurotropism and Invasiveness of $\alpha-Herpes$ Virus in the Rodent (설치류에서 알파 Herpes 바이러스의 신경친화성과 침습)

  • KIM Jin-Sang;Yi Seong-Joon;Card J. Patrick
    • The Journal of Korean Physical Therapy
    • /
    • v.9 no.1
    • /
    • pp.59-70
    • /
    • 1997
  • The ability of neurotropic alpha herpesviruses to replicate within synaptically linked neurons has made these pathogens valuable tools for transneuronal analysis. Recent studies suggest that unique gene products expressed by genetically engineered strains of virus may permit the use of multiple strains in complex tracing paradigms. In the present study we have examined the invasiveness of two genetically engineered strains of the swine pathogen known as pseudorabies virus(PRV). The two strains were isogenic with the attenuated Bartha strain of PRV; in one strain a lacZ reporter gene was inserted into the gC locus (PRV-BaBlu; $4.75\times10^8pfu/ml$) contrained a PRV envelope glycoprotein gene that was absent in PRV-BaBlu. Simultaneous or temporally separated sequential injection of $4\mu\ell$ of each strain into the ventral wall of the stomach produced a predictale course of retrograde synaptic infection. The results were as follows: 1. PRV-BaBlu and PRV-D infected the dorsal motor nucleus of vagus nerve(DMV) and paraventricular nucleus(PVN). 2. Invasion and replication of PRV-D occured at a faster rate than the parental strain or PRV-BaBlu. 3. PRV-D was much more virulent than PRV-BaBlu or the parental strain. 4. Co-injection of PRV-D and PRV-BaBlu produced an infection that was more virulent than that produced by the parental strain (PRV-Bartha), 5. Neurons in DMV were permissive to co-infection with PRV-D and PRV-BaBlu when they were injected simultaneously into the same site. 6. Replication of PRV-BaBlu was compromised by prior infection of the same circuit with PRV-D. 7. Prior infection of neurons with PRV-D maked them resistant to infection with PRV-BaBlu.

  • PDF

A study on the recycle of reused slurry abrasives (CMP 폐슬러리내의 필터링된 연마 입자 재활용에 관한 연구)

  • Kim, Gi-Uk;Seo, Yong-Jin;Park, Sung-Woo;Jeong, So-Young;Kim, Chul-Bok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.50-53
    • /
    • 2003
  • CMP (chemical mechanical polishing) process remained to solve several problems in deep sub-micron integrated circuit manufacturing process. especially consumables (polishing pad, backing film, slurry, pad conditioner), one of the most important components in the CMP system is the slurry. Among the composition of slurries (buffer solution, bulk solution, abrasive particle, oxidizer, inhibitor, suspension, antifoaming agent, dispersion agent), the abrasive particles are important in determining polish rate and planarization ability of a CMP process. However, the cost of abrasives is still very high. So, in order to reduce the high COO (cost of ownership) and COC (cost of consumables) in this paper, we have collected the silica abrasive powders by filtering after subsequent CMP process for the purpose of abrasive particle recycling. And then, we have studied the possibility of recycle of reused silica abrasive through the analysis of particle size and hardness. Also, we annealed the collected abrasive powders to promote the mechanical strength of reduced abrasion force. Finally, we compared the CMP characteristics between self-developed KOH-based silica abrasive slurry and original slurry. As our experimental results, we obtained the comparable removal rate and good planarity with commercial products. Consequently, we can expect the saving of high cost slurry.

  • PDF

Influence of Bath Temperature on Electroless Ni-B Film Deposition on PCB for High Power LED Packaging

  • Samuel, Tweneboah-Koduah;Jo, Yang-Rae;Yoon, Jae-Sik;Lee, Youn-Seoung;Kim, Hyung-Chul;Rha, Sa-Kyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.323-323
    • /
    • 2013
  • High power light-emitting diodes (LEDs) are widely used in many device applications due to its ability to operate at high power and produce high luminance. However, releasing the heat accumulated in the device during operating time is a serious problem that needs to be resolved to ensure high optical efficiency. Ceramic or Aluminium base metal printed circuit boards are generally used as integral parts of communication and power devices due to its outstanding thermal dissipation capabilities as heat sink or heat spreader. We investigated the characterisation of electroless plating of Ni-B film according to plating bath temperature, ranging from $50^{\circ}C$ to $75^{\circ}C$ on Ag paste/anodised Al ($Al_2O_3$)/Al substrate to be used in metal PCB for high power LED packing systems. X-ray diffraction (XRD), Field-Emission Scanning Electron Microscopy (FE-SEM) and X-ray Photoelectron Spectroscopy (XPS) were used in the film analysis. By XRD result, the structure of the as deposited Ni-B film was amorphous irrespective of bath temperature. The activation energy of electroless Ni-B plating was 59.78 kJ/mol at the temperature region of $50{\sim}75^{\circ}C$. In addition, the Ni-B film grew selectively on the patterned Ag paste surface.

  • PDF

A Study on the Reversible SCR Servo Amplifier (정역전이 가능한 SCR 서보증폭기에 관한 연구)

  • Ahn, B. W.;Park, S. K.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.190-198
    • /
    • 1995
  • Many industrial servo amplifiers employ power transister as output device. Thyristor converters are not adopted to drive servo motor, although thyristor is superior to power TR in power rating, noise immunity, price, and size. The reason is, thyristor has no ability of self turn - off. Here in this paper line commutation, in which thyristor is turned off naturally since cathode voltage is higher than anode as time goes by, is employed to turn on thyristor with a delicate sequence. We developed thyristor servo amplifier which does not cause any damage on thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was made clearly how to trigger SCR without any power line shorting and also harmonic analysis is carried out with the aid of FFT analyzer and proved that it can be used even severe reactive load. The designed circuit operated as a good DC amplifier in conventinal servomotor and the results can be use as a position control system application.

  • PDF

PASTELS project - overall progress of the project on experimental and numerical activities on passive safety systems

  • Michael Montout;Christophe Herer;Joonas Telkka
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.803-811
    • /
    • 2024
  • Nuclear accidents such as Fukushima Daiichi have highlighted the potential of passive safety systems to replace or complement active safety systems as part of the overall prevention and/or mitigation strategies. In addition, passive systems are key features of Small Modular Reactors (SMRs), for which they are becoming almost unavoidable and are part of the basic design of many reactors available in today's nuclear market. Nevertheless, their potential to significantly increase the safety of nuclear power plants still needs to be strengthened, in particular the ability of computer codes to determine their performance and reliability in industrial applications and support the safety demonstration. The PASTELS project (September 2020-February 2024), funded by the European Commission "Euratom H2020" programme, is devoted to the study of passive systems relying on natural circulation. The project focuses on two types, namely the SAfety COndenser (SACO) for the evacuation of the core residual power and the Containment Wall Condenser (CWC) for the reduction of heat and pressure in the containment vessel in case of accident. A specific design for each of these systems is being investigated in the project. Firstly, a straight vertical pool type of SACO has been implemented on the Framatome's PKL loop at Erlangen. It represents a tube bundle type heat exchanger that transfers heat from the secondary circuit to the water pool in which it is immersed by condensing the vapour generated in the steam generator. Secondly, the project relies on the CWC installed on the PASI test loop at LUT University in Finland. This facility reproduces the thermal-hydraulic behaviour of a Passive Containment Cooling System (PCCS) mainly composed of a CWC, a heat exchanger in the containment vessel connected to a water tank at atmospheric pressure outside the vessel which represents the ultimate heat sink. Several activities are carried out within the framework of the project. Different tests are conducted on these integral test facilities to produce new and relevant experimental data allowing to better characterize the physical behaviours and the performances of these systems for various thermo-hydraulic conditions. These test programmes are simulated by different codes acting at different scales, mainly system and CFD codes. New "system/CFD" coupling approaches are also considered to evaluate their potential to benefit both from the accuracy of CFD in regions where local 3D effects are dominant and system codes whose computational speed, robustness and general level of physical validation are particularly appreciated in industrial studies. In parallel, the project includes the study of single and two-phase natural circulation loops through a bibliographical study and the simulations of the PERSEO and HERO-2 experimental facilities. After a synthetic presentation of the project and its objectives, this article provides the reader with findings related to the physical analysis of the test results obtained on the PKL and PASI installations as well an overall evaluation of the capability of the different numerical tools to simulate passive systems.