• Title/Summary/Keyword: Circuit Breaker

Search Result 690, Processing Time 0.03 seconds

A Study on the Circuit Breaker Transient Recovery Voltages on Large Commercial Customer using EMTP-RV Program (EMTP-RV를 이용한 대용량 전기설비의 차단기 TRV에 관한 연구)

  • Cho, Kyeh-Sool;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.59-66
    • /
    • 2011
  • In electric power system, the circuit breaker is not operated when the higher voltage then the rated TRV(transient Recovery Voltage) appeared in the circuit breaking, The TRV of a circuit breaker means the characteristics of reignition by the arc between two poles. and is decided by the value of connecting Impedance. In this paper we of carried out many kinds of experiments varying the types of bus, the types of installation, the length of installation between 22.9 [kV] level circuit breaker and MTR in general 154/22.9[kV] system, We also simulated the characteristics of TRV using EMTP-RV program. The suitability of TRV in assessed by Uc, RRRV(Rate of Rise of Recovery Voltage) which are defined by the international guide, IEC62271-100. The values of RRRV gained from the cable-made bus are 590[%] lesser than those from the NSPB-made bus respectively. So the triangled type is more rational in the aspect of TRV.

Investigation of Small Current Interruption Performance for New Type of Interrupting Chamber in SF$_{6}$ Gas Circuit Breaker (신차단방식 SF$_{6}$ 가스 차단기의 소전류 차단성능 연구)

  • Song, Won-Pyo;Kweon, Ki-Yeoung;Lee, Jae-Sung;Song, Ki-Dong;Kim, Maeng-Hyun;Ko, Hee-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.519-526
    • /
    • 2005
  • This paper presents computer simulation results for developing new type of SF$_{6}$ Circuit Breaker in terms of cold gas flow after small current interruption. This cold gas flows down a nozzle into the chamber of a circuit breaker. There are many difficult problems in analyzing the gas flow due to complex geometry, moving boundary, shock wave and so on. When predicting the dielectric capability of a gas circuit breaker after interruption, the gas pressure and density distributions due to the cold gas must be considered in addition to the electrical field imposed across the gas. A self-coded computational fluid dynamics (CFD) program is used for the simulation of cold gas flow in order to evaluate the electrical field characteristic across open contacts and transient characteristics of insulations after small current interruption.

A Study on the Possibility of Electrical Fires due to the Short Circuit and Ground Fault of Power Cable Supported by an Iron Fence (철제펜스로 지지된 동력배선의 단락.지락에 의한 전기화재 발생 개연성 연구)

  • Kim, Jeong-Hun;Park, Byoung-Ki;Song, Jong-Hyeok;Jung, Ki-Chang
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.6
    • /
    • pp.41-45
    • /
    • 2007
  • Short circuit and ground fault account for the primary causes of electrical fires. In this research, real-scale experiments were conducted to assess the possibility of electrical fires due to these causes. The experiment conditions were identical with an actual fire accident, in which the power cable was supported by an iron fence. The purposes of this research are to investigate the short circuit caused by wire cutting, the conductivity of the iron fence depending on its coating conditions, and the ground fault of one wire or two wires in an effort to reconstruct the fire accident. The test results show that, owing to the instant operation of circuit breaker in the moment of short circuit or ground fault, the generated ignition energy is far less than necessary to start an ignition. Therefore it is concluded that electrical fire is highly unlikely if the electric system is protected by a circuit breaker with normal functions.

Design of an power transfer breaker by Taguchi method (다구찌 법을 이용한 전력전환차단기의 설계)

  • Kim, Kyung-Sun;Kim, Kwon-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.810-814
    • /
    • 2001
  • power transfer breaker is a device used to transfer the load from the electricity power line to the emergency generators. In case of overload, it also functions as a circuit breaker. In this work, a new mechanism for the device is suggested. Among the various design challenges, optimization of the trigger mechanism is identified as of central importance. Optimal design decisions are made with the use of Taguchi method.

  • PDF

Reliability Assessment on the Indoor Vacuum Circuit Breaker Used in Distribution System (배전급 옥내용 진공차단기의 신뢰성평가)

  • Kim, Min-Kyu;Kim, Maeng-Hyun;Shin, Young-June
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper represent a test method for the reliability assessment on the indoor vacuum circuit breakers used in the distribution system by an accelerated life test. In order to guarantee the lifetime in service of the vacuum circuit breaker, additional test methods are suggested. Multiple closing-opening operation test under no load condition as a mechanical endurance test and a check of the quality in the vacuum interrupter are adopted to assure the long-term reliability of the vacuum circuit breaker.

  • PDF

SCFL Application for Reducing Fault Current (고장전류 저감을 위한 초전도 한류기 적용)

  • Kim, Hak-Man;Kim, Jong-Yul;Choi, Sang-Bong;Moon, Young-Hwan;Sung, Ki-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.206-208
    • /
    • 2002
  • The transmission system is designed to be protected by 40 kA rate of circuit breaker fer 345 tV system and 31.5 kA and 50 kA rate of circuit breaker for 154 kV system. The short circuit current shows the tendency of exceeding circuit breaker duty for some substations and the tendency will continue if an appropriate countermeasure will not be applied to. In order to solve this problem from the viewpoint of system operation, the 154 kV system is under reconfiguration to be radial systems. This paper presents application effect of resistive and inductive SCFL (Superconducting Fault Current Limiter to Korea power systems. An algorithm of SCFL site decision is suggested.

  • PDF

Switching Surge Analysis of Vacuum Circuit breaker at the Power Plant distribution lines (발전소 비전계통 진공차단기의 스위칭 써지 해석)

  • Kim, Ik-Mo;Kim, Ji-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.305-308
    • /
    • 2001
  • The first objective of this study is to set up the switching surge analysis method in motor driving distribution system. The simplified model which can simulate the motor energization and circuit breaker re-ignitions, and each circuit element model is presented in this paper. The second objective is to calculate the quantify of surge over-voltage in real nuclear power station. And the surge suppressing measures are verified on the simulation basis. It is clarified that most cases are not satisfactory to meet the IEEE standard 522-1992 without using surge suppressing measures. In cases that the surge arrester are installed in distribution board at the load side of circuit breaker. The IEEE specification is fully met.

  • PDF

Parametric Study and Optimized Thermal Design of a High-Voltage Vacuum Circuit Breaker (고압진공차단기의 정격전류상승을 위한 GAE해석)

  • Ahn, Heui-Sub;Lee, Jong-Chul;Choi, Jong-Ung;Oh, Il-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.39-42
    • /
    • 2002
  • In this study, the computational heat transfer of the high-voltage vacuum circuit breaker was investigated. Higher normal current-ratings and stabilized thermal characteristics become more important in existing circuit breakers in order to satisfy market needs. Increases in current-ratings have an even greater effect on the Joule heating in the main circuit of the breakers. The thermal design must account for this increase in heat produced for the breaker to meet various temperature-rise limits set by industry standards. We are studying to enhance the normal current-ratings without major frame change of our present production models. As the method used in this research, we performed the computational analysis using the commercial Package, ICEPAK. We could get optimized thermal design suitable for 25% upgraded normal current-ratings through parametric study.

  • PDF