• Title/Summary/Keyword: Circle model

Search Result 296, Processing Time 0.027 seconds

A Study on Design of Production System Using Multiple Characteristics Robust Design in Uncertain Environment (불확실한 환경에서의 다특성치 강건설계를 이용한 생산시스템 설계에 관한 연구)

  • 양광모;서장훈;박진홍;강경식
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.05a
    • /
    • pp.61-65
    • /
    • 2004
  • As technique that can contribute in quality improvement in design process to overcome shortcoming of traditional quality control, call design or development department quality control activity that is achieved to reduce gun damage shuddering at circle minimizing change or side effect of product performance as off-line quality control. This paper discuss optimal process design of investment projects expansion and replacement investment on each line or individual in the production. Generally optimal plant design has add to a few method by Subsidiary means with use a especial method. And then in this paper, a Robust design is presented, which may be effective to the processes appraisal or improvement. We propose that should make a optimal plant design model for reducing field failure rate to assign by real data on different factors in plant system. Using this model, robust design of taguchi method used in this comprehensive method for reducing field failure rate in plant system.

  • PDF

A Study on the Stability of a Low Freeboard Coastwise Tanker Capsized in Turning (2) - Experimental Examination of the Outward Heel Moment Induced by Flooding of Seawater onto the Deck - (선회중 전복한 저건현 내항 탱커의 복원성에 관한 연구 (2) - 갑판상 해수 침입이 경사 모멘트에 미치는 영향에 대한 실험적 조사 -)

  • 김철승;공길영;김순갑
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.145-153
    • /
    • 2002
  • A coastwise chemical tanker sailing at full speed has capsized in calm water and whole turing. In the precious paper, we investigated reasons of the accident by demonstrating the proper correction for the free surface effect of the liquid cargo and the bow-sinkage effect. In this paper, we also carry out model experiments of a transverse pressure under the seawater and an outward heel moment according to the heel angle and rudder angle, on the basis of radius of turning circle, ship's speed and drift angle of model ship occurring in turning. It is also shown that the flooding of seawater onto the deck occurring in turning generated a significant outward heel moment and the vertical distance between the center of gravity of the ship and the renter of lateral water drag.

  • PDF

Numerical Heat Transfer and Fluid Flow of Brake Disk-lining for Rolling Stock (철도차량용 제동 디스크-라이닝의 열유동 해석)

  • 남성원;조장형
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.93-98
    • /
    • 1999
  • Numerical simulation is conducted to clarify the heat transfer and fluid flow characteristics of brake disk-lining for rolling stock. Multiple rotational reference frame, k-epsilon turbulent model and SIMPLE algorithm based on finite volume method are used to solve the physical disk-lining model. The governing equations are solved by TDMA(TriDiagonal Matrix Algorithm) with line-by-line method and block correction, From the results of simulation, the characteristics of cooling pattern is strongly affected by the grooves in lining. The face lift of lining affects on the temperature distribution of rear surface of lining as well as the front surface of that. Due to the grooves in lining, it will be expected to extend the maintenance life circle of lining.

  • PDF

Interaction between two neighboring tunnel using PFC2D

  • Sarfarazi, V.;Haeri, Hadi;Safavi, Salman;Marji, Mohammad Fatehi;Zhu, Zheming
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.77-87
    • /
    • 2019
  • In this paper, the interaction between two neighboring tunnel has been investigated using PFC2D. For this purpose, firstly calibration of PFC was performed using Brazilian experimental test. Secondly, various configuration of two neighboring tunnel was prepared and tested by biaxial test. The maximum and minimum principle stresses were 0.2 and 30 MPa respectively. The modeling results show that in most cases, the tensile cracks are dominant mode of cracks that occurred in the model. With increasing the diameter of internal circle, number of cracks decreases in rock pillar also number of total cracks decreases in the model. The rock pillar was heavily broken when its width was too small. In fixed quarter size of tunnel, the crack initiation stress decreases with increasing the central tunnel diameter. In fixed central tunnel size, the crack initiation stress decreases with increasing the quarter size of tunnel.

Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures (복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링)

  • Yoon, Seon Jhin
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.

ON CONSTRUCTIONS OF MINIMAL SURFACES

  • Yoon, Dae Won
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • In the recent papers, S'anchez-Reyes [Appl. Math. Model. 40 (2016), 1676-1682] described the method for finding a minimal surface through a geodesic, and Li et al. [Appl. Math. Model. 37 (2013), 6415-6424] studied the approximation of minimal surfaces with a geodesic from Dirichlet function. In the present article, we consider an isoparametric surface generated by Frenet frame of a curve introduced by Wang et al. [Comput. Aided Des. 36 (2004), 447-459], and give the necessary and sufficient condition to satisfy both geodesic of the curve and minimality of the surface. From this, we construct minimal surfaces in terms of constant curvature and torsion of the curve. As a result, we present a new approach for constructions of the minimal surfaces from a prescribed closed geodesic and unclosed geodesic, and show some new examples of minimal surfaces with a circle and a helix as a geodesic. Our approach can be used in design of minimal surfaces from geodesics.

Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane (카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출)

  • Jang, Ho-Jin;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Studies on the Mackerel Purse Seine Operation in the Sea Area of Cheju Island - 1 . Model Experiment on the Changes of Net Shape in Stagnant Water - (제주도 주변해엽 고등어 포착망의 연구 - 1 . 정수에 있어서 망형 변화에 관한 모형실험 -)

  • 박정식
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.2
    • /
    • pp.7-15
    • /
    • 1986
  • In order to investigate the performance for the mackerel purse seine of one boat purse seiner using in the sea area of Cheju Island, a model net is made of the scale of 1/400 of its full scale, and model test on the shape of net and the tension of purse line is carried out in the stagnant water channel of the circulating water tank. Designing and testing for the model net are based on the Tauti's law. The obtained results are as follows; 1. The sinking rate of net is maximized the value of 6.40 m/min from 5 to 10 minutes after shooting net, and the mean value is 6.13 m/min. 2. The enclosed area formed with the float line after pursing operation is 76-84% of the area which is formed immediately after the shooting operation. At that time, purse seine is pulled inward the circle of surrounding net about 26.5% of the diameter. 3. In operating, when longitudinal section area of the central part of the net is maximized, the split area of both the wing-ends is 31-32% of the former. 4. When the time for the completing of pursing is 20 minutes, the maximum tension of the purse line is about 10.2 tons.

  • PDF

A Roots Method in GI/PH/1 Queueing Model and Its Application

  • Choi, Kyung Hwan;Yoon, Bong Kyoo
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.281-287
    • /
    • 2013
  • In this paper, we introduce a roots method that uses the roots inside the unit circle of the associated characteristics equation to evaluate the steady-state system-length distribution at three epochs (pre-arrival, arbitrary, and post-departure) and sojourn-time distribution in GI/PH/1 queueing model. It is very important for an air base to inspect airplane oil because low-quality oil leads to drop or breakdown of an airplane. Since airplane oil inspection is composed of several inspection steps, it sometimes causes train congestion and delay of inventory replenishments. We analyzed interarrival time and inspection (service) time of oil supply from the actual data which is given from one of the ROKAF's (Republic of Korea Air Force) bases. We found that interarrival time of oil follows a normal distribution with a small deviation, and the service time follows phase-type distribution, which was first introduced by Neuts to deal with the shortfalls of exponential distributions. Finally, we applied the GI/PH/1 queueing model to the oil train congestion problem and analyzed the distributions of the number of customers (oil trains) in the queue and their mean sojourn-time using the roots method suggested by Chaudhry for the model GI/C-MSP/1.

A Simplified Horizontal Maneuvering Model of a RIB-Type Target Ship (RIB형 표적정의 수평면 조종운동 간략모델)

  • Yoon, Hyeon-Kyu;Yeo, Dong-Jin;Fang, Tae-Hyun;Yoon, Kun-Hang;Lee, Chang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.572-578
    • /
    • 2007
  • A Rigid Inflatable Boat (RIB) is now widely used for commercial and military purpose. In this paper, it is supposed that seven-meter-class RIB be used as an unmanned target ship for naval training. In order to develop many tactical maneuvering patterns of a target ship, a simple horizontal maneuvering model of a RIB is needed. Therefore, models of speed and yaw rate are constructed as the first-order differential equations based on Lewandowski#s empirical formula for steady turning circle diameter of a conventional planning hull. Some parameters in the models are determined using the results of sea trial tests. Finally, proposed models are validated through the comparison of the simulation result with the sea trial result for a specific scenario. Even though a simple model does not represent the horizontal motion of a RIB precisely, however, it can be used enough to develop tactical trajectory patterns.