• Title/Summary/Keyword: Cingulate cortex

Search Result 81, Processing Time 0.028 seconds

Inhibition of anterior cingulate cortex excitatory neuronal activity induces conditioned place preference in a mouse model of chronic inflammatory pain

  • Kang, Sukjae Joshua;Kim, Siyong;Lee, Jaehyun;Kwak, Chuljung;Lee, Kyungmin;Zhuo, Min;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.487-493
    • /
    • 2017
  • The anterior cingulate cortex (ACC) is known for its role in perception of nociceptive signals and the associated emotional responses. Recent optogenetic studies, involving modulation of neuronal activity in the ACC, show that the ACC can modulate mechanical hyperalgesia. In the present study, we used optogenetic techniques to selectively modulate excitatory pyramidal neurons and inhibitory interneurons in the ACC in a model of chronic inflammatory pain to assess their motivational effect in the conditioned place preference (CPP) test. Selective inhibition of pyramidal neurons induced preference during the CPP test, while activation of parvalbumin (PV)-specific neurons did not. Moreover, chemogenetic inhibition of the excitatory pyramidal neurons alleviated mechanical hyperalgesia, consistent with our previous result. Our results provide evidence for the analgesic effect of inhibition of ACC excitatory pyramidal neurons and a prospective treatment for chronic pain.

A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

  • Zhuo, Min
    • Molecules and Cells
    • /
    • v.23 no.3
    • /
    • pp.259-271
    • /
    • 2007
  • Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Behavioral Changes of Rats following Cingulate or Other Cortical Damages (대상회전 기타 피질이 손상된 흰쥐들의 행동 변화)

  • Kim, Chung-Chin;Kim, Jong-Kyu;Kim, Myung-Suk
    • The Korean Journal of Physiology
    • /
    • v.2 no.2
    • /
    • pp.83-92
    • /
    • 1968
  • A study was planned to evaluate the effects of removal of the cingulate cortex upon the occurrence of any behavior commonly displayed by the rat, and to compare the effects of cingulectomy with those of removal of the parietal, parieto-occipital, or occipital regions. The subjects were 54 male albino rats (Holtzman strain, body weight $200{\sim}330\;gm$) including 14 rats in which the cingulate gyri between splenium and genu of the corpus callosum were bilaterally ablated by suction (cingulate group), 9 animals which had their parietal cortices (chiefly area 7) partially removed (parietal group), 9 rats whose parietal and occipital regions (chiefly areae 7 & 17), 13 animals in which the occipital cortices (chiefly area 17) were removed bilaterally (occipital group), and 9 normal rats (normal control group). Eighteen observation cages, each of which housed a subject and was provided with food and water ad lib., were arranged in 6 rows on a rack and the behavior of each subject was scanned by an observer at a distance of 1.5 m from the rack. The observer scanned the first and second rows 6 times in 1 min, then proceeded to the 3rd and 4th rows, scanning for another 1 min, and finally to the 5th and 6th rows. The speed of scanning was such that behavioral observations of all of the 18 rats were completed in 3 min, each subject receiving 6 observations. The scanning was repeated every 3 min for 18 min, which constituted one observation session and was followed by a 72 minutes' recess. The whole procedure was repeated through 24 hours so that a total of 576 behavioral observations were made on each subject in 16 observation sessions. Behaviors checked were sleeping, lying, lying and sniffing, standing, standing and sniffing, exploring, eating, drinking, grooming (included were washing, licking, and scratching), and others. Results obtained were as follows: 1. The cingulate group ate significantly more often than the normal control, the parietal, and the parieto-occipital groups. 2. Exploration was significantly less frequent in the cingulate group than in the normal control, the parietal, and the occipital groups. There was, in the case of the cingulate group, a significant negative correlation between the occurrence of eating and the exploratory activity. 3. The general activity, as judged from the value obtained by adding the occurrence of exploration, eating, drinking, grooming, and standing and sniffing, was significantly increased in the cingulate group compared with those of any other groups including the normal control. 4. Though statistically insignificant, the cingulate group slept least often among all the animal groups tested. 5. The parieto-occipital group tended to groom less, and the parietal group to eat less often than the normal control group did, but the difference was not significant. There were no significant differences among all the groups except the cingulate group as regards other behaviors analyzed. Based on the above results, it was inferred that the cingulate cortex exerts an inhibitory influence upon the occurrence of eating and general activity, while it tends to facilitate the occurrence of sleep.

  • PDF

Cortical Iron Accumulation as an Imaging Marker for Neurodegeneration in Clinical Cognitive Impairment Spectrum: A Quantitative Susceptibility Mapping Study

  • Hyeong Woo Kim;Subin Lee;Jin Ho Yang;Yeonsil Moon;Jongho Lee;Won-Jin Moon
    • Korean Journal of Radiology
    • /
    • v.24 no.11
    • /
    • pp.1131-1141
    • /
    • 2023
  • Objective: Cortical iron deposition has recently been shown to occur in Alzheimer's disease (AD). In this study, we aimed to evaluate how cortical gray matter iron, measured using quantitative susceptibility mapping (QSM), differs in the clinical cognitive impairment spectrum. Materials and Methods: This retrospective study evaluated 73 participants (mean age ± standard deviation, 66.7 ± 7.6 years; 52 females and 21 males) with normal cognition (NC), 158 patients with mild cognitive impairment (MCI), and 48 patients with AD dementia. The participants underwent brain magnetic resonance imaging using a three-dimensional multi-dynamic multi-echo sequence on a 3-T scanner. We employed a deep neural network (QSMnet+) and used automatic segmentation software based on FreeSurfer v6.0 to extract anatomical labels and volumes of interest in the cortex. We used analysis of covariance to investigate the differences in susceptibility among the clinical diagnostic groups in each brain region. Multivariable linear regression analysis was performed to study the association between susceptibility values and cognitive scores including the Mini-Mental State Examination (MMSE). Results: Among the three groups, the frontal (P < 0.001), temporal (P = 0.004), parietal (P = 0.001), occipital (P < 0.001), and cingulate cortices (P < 0.001) showed a higher mean susceptibility in patients with MCI and AD than in NC subjects. In the combined MCI and AD group, the mean susceptibility in the cingulate cortex (β = -216.21, P = 0.019) and insular cortex (β = -276.65, P = 0.001) were significant independent predictors of MMSE scores after correcting for age, sex, education, regional volume, and APOE4 carrier status. Conclusion: Iron deposition in the cortex, as measured by QSMnet+, was higher in patients with AD and MCI than in NC participants. Iron deposition in the cingulate and insular cortices may be an early imaging marker of cognitive impairment related neurodegeneration.

Altered Functional Disconnectivity in Internet Addicts with Resting-State Functional Magnetic Resonance Imaging

  • Seok, Ji-Woo;Sohn, Jin-Hun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.377-386
    • /
    • 2014
  • Objective: In this study, we used resting-state fMRI data to map differences in functional connectivity between a comprehensive set of 8 distinct cortical and subcortical brain regions in healthy controls and Internet addicts. We also investigated the relationship between resting state connectivity strength and the level of psychopathology (ex. score of internet addiction scale and score of Barratt impulsiveness scale). Background: There is a lot of evidence of relationship between Internet addiction and impaired inhibitory control. Clinical evidence suggests that Internet addicts have a high level of impulsivity as measured by behavioral task of response inhibition and a self report questionnaire. Method: 15 Internet addicts and 15 demographically similar non-addicts participated in the current resting-state fMRI experiment. For the connectivity analysis, regions of interests (ROIs) were defined based on the previous studies of addictions. Functional connectivity assessment for each subject was obtained by correlating time-series across the ROIs, resulting in $8{\times}8$ matrixs for each subject. Within-group, functional connectivity patterns were observed by entering the z maps of the ROIs of each subject into second-level one sample t test. Two sample t test was also performed to examine between group differences. Results: Between group, the analysis revealed that the connectivity in between the orbito frontal cortex and inferior parietal cortex, between orbito frontal cortex and putamen, between the orbito frontal cortex and anterior cingulate cortex, between the insula and anterior cingulate cortex, and between amydgala and insula was significantly stronger in control group than in the Internet addicts, while the connectivity in between the orbito frontal cortex and insula showed stronger negative correlation in the Internet addicts relative to control group (p < 0.001, uncorrected). No significant relationship between functional connectivity strength and current degree of Internet addiction and degree of impulsitivy was seen. Conclusion: This study found that Internet addicts had declined connectivity strength in the orbitofrontal cortex (OFC) and other regions (e.g., ACC, IPC, and insula) during resting-state. It may reflect deficits in the OFC function to process information from different area in the corticostriatal reward network. Application: The results might help to develop theoretical modeling of Internet addiction for Internet addiction discrimination.

Dysfunctional Social Reinforcement Processing in Disruptive Behavior Disorders: An Functional Magnetic Resonance Imaging Study

  • Hwang, Soonjo;Meffert, Harma;VanTieghem, Michelle R.;Sinclair, Stephen;Bookheimer, Susan Y.;Vaughan, Brigette;Blair, R.J.R.
    • Clinical Psychopharmacology and Neuroscience
    • /
    • v.16 no.4
    • /
    • pp.449-460
    • /
    • 2018
  • Objective: Prior functional magnetic resonance imaging (fMRI) work has revealed that children/adolescents with disruptive behavior disorders (DBDs) show dysfunctional reward/non-reward processing of non-social reinforcements in the context of instrumental learning tasks. Neural responsiveness to social reinforcements during instrumental learning, despite the importance of this for socialization, has not yet been previously investigated. Methods: Twenty-nine healthy children/adolescents and 19 children/adolescents with DBDs performed the fMRI social/non-social reinforcement learning task. Participants responded to random fractal image stimuli and received social and non-social rewards/non-rewards according to their accuracy. Results: Children/adolescents with DBDs showed significantly reduced responses within the caudate and posterior cingulate cortex (PCC) to non-social (financial) rewards and social non-rewards (the distress of others). Connectivity analyses revealed that children/adolescents with DBDs have decreased positive functional connectivity between the ventral striatum (VST) and the ventromedial prefrontal cortex (vmPFC) seeds and the lateral frontal cortex in response to reward relative to non-reward, irrespective of its sociality. In addition, they showed decreased positive connectivity between the vmPFC seed and the amygdala in response to non-reward relative to reward. Conclusion: These data indicate compromised reinforcement processing of both non-social rewards and social non-rewards in children/adolescents with DBDs within core regions for instrumental learning and reinforcement-based decision-making (caudate and PCC). In addition, children/adolescents with DBDs show dysfunctional interactions between the VST, vmPFC, and lateral frontal cortex in response to rewarded instrumental actions potentially reflecting disruptions in attention to rewarded stimuli.

The Relationship between Brain Activities and Presence on Communication using an Avatar in Virtual Reality (가상현실에서 아바타를 통한 정보전달 시 뇌의 활성화와 현존감의 관계)

  • Lee, Hyeon-Rae;Kim, So-Young;Yoon, K.J.;Nam, Sang-Won;Kim, Jae-Jin;Kim, In-Young;Kim, Sun-I.;Ku, Jeong-Hun
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.4
    • /
    • pp.357-373
    • /
    • 2006
  • Virtual reality (VR) provides a virtual experiment (VE) context consisting of information presented to the senses of the user. The user perceiver and interprets the VE context, and then naturally recognizes a level of realism in the VE. Presence is often thought of as the sense of 'being there' in the n. Presence includes overall feelings about the information conveyed from a virtual avatar to the user. Therefore, there must be brain mechanisms for integrating sensory information about presence.'Feeling of presence' is related with the user's cognition and perception about information on communication through medium. Thus 'feeling of presence' may characterize perceptual mechanisms in the brain. We studied these mechanisms by presenting a VR that consisted of an avatar telling a story about a social conversation. We performed covariance analysis on subjective brain activity (fMRI) during the story presentation with a presence score. The data analysis revealed that activity in several brain areas was correlated with the presence store. A positive correlation was shown in the right lingual gyrus, right cuneus, left lingual gyrus, right fusiform gyrus, left inferior temporal gyrus, anterior cingulate cortex and right posterior cingulate cortex of the brain. This study showed the brain mechanism to be related the feeling of presence and brain activities in our subjects, using VR to communicate information.

  • PDF

Effect of Joksamni combination on NADPH-diaphorase, neuronal Nitric Oxide Synthase, Neuropeptide Y and Vasoactive Intestinal Peptide in the cerebral cortex of Spontaneously Hypertensive Rat (족삼리(足三里) 배혈(配穴)에 따른 전침(電鍼)이 흰쥐 대뇌피질(大腦皮質)의 NADPH-diaphorase와 nNOS, NPY, VIP 신경세포(神經細胞)에 미치는 영향(影響))

  • Jung, In-gy;Lee, Jae-dong;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.118-132
    • /
    • 2003
  • Objective: The aim of this study was to investigate the effects of Joksamni(ST36) combination on NAD PH-diaphorase, neuronal nitric oxide synthase(nNOS), neuropeptide Y(NPY) and vasoactive intestinal peptide (VIP) in the cerebral cortex of spontaneously hypertensive rat. Methods: The experimental groups were divided into four groups: Normal, Joksamni(ST36), Joksamni(ST36)+Eumneungcheon(SP9), and Joksamni(ST36)+Gokji(LI11). Needles were inserted into acupoints at the depth of 0.5cm with basic insertion method. Electroacupuncture was done under the condition of 2Hz electrical biphasic pulses with continuous rectangular wave lasting for 0.2ms until the muscles produced visible contractions. Such stimulation was applied continuously for 10 minutes, 1 time every 2 days for 10 sessions of treatments. Thereafter we evaluated changes in NADPH-d positive neurons histochemically and changes in nNOS, NPY and VIP positive neurons immunohistochemically. Results: The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in primary somatosensory cortex, visual cortex, auditory cortex, perirhinal cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group with the exception of primary somatosensory cortex. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in auditory cortex, perirhinal cortex, insular cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. The optical densities of NPY positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in primary motor cortex, primary somatosensory cortex, cingulate cortex as compared to the Joksamni (ST36) and Joksamni(ST36)+Eumneungcheon(SP9) groups. The optical densities of VIP positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group were significantly increased in all areas of cerebral cortex except for cingulate cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in auditory cortex, cingulate cortex, perirhinal cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. Conclusions: The result demonstrated that electroacupuncture on Joksamni(ST36) and its combination change the activities of the NO system and peptidergic system in the cerebral cortex of SHR and that acupoint combination is one of the important parameters for the effects.

  • PDF

Anterior Cingulate Cortex and Amygdala Dysfunction Among Patients with Alcohol Dependency During Exposure to Negative Emotional Stimuli

  • Park, Mi-Sook
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.103-112
    • /
    • 2018
  • This study aimed to identify specific psychological and brain activation responses relating to the processing of negative emotions in patients with alcohol dependency. The authors hypothesized that patients with alcohol dependency would demonstrate the abnormal functioning of brain regions involved in negative emotions. Eleven male patients diagnosed with alcohol dependence in an inpatient alcohol treatment facility and 13 social drinkers with similar demographics were scanned using functional magnetic resonance imaging (fMRI) as they viewed film clips that evoked negative emotions. During exposure to negative emotional stimuli, the control group evinced significantly greater activity in the right anterior cingulate cortex (ACC) in comparison to patients with alcohol dependency. Correlation analyses demonstrated a negative association in the relationship between beta values from the right ACC and amygdala in participants classified in the control group. No statistically significant relationship was observed for blood oxygenation level-dependent (BOLD) changes between the two regions in the patient group during the elicitation of negative emotions. On the other hand, patients exhibited a greater activation of the amygdala as negative emotions were induced. These results suggest that alcoholism presents pathophysiology of brain activation that is distinct from the responses of healthy individuals functioning as controls.

Projections from the Prefrontal Cortex to the Dorsal Raphe Nucleus of the Rat

  • Lee, Hyun S.;Kim, Myung-A
    • Animal cells and systems
    • /
    • v.6 no.2
    • /
    • pp.159-165
    • /
    • 2002
  • Projections from the prefrontal cortex to subdivisions of the dorsal raphe nucleus were investigated in the rat using retrograde and anterograde tracing methods. A retrograde tracer, gold-conjugated horseradish peroxidase (WGA-apo-HRP-gold), was injected into each subdivision of the dorsal raphe including lateral wing, dorsomedial, and ventromedial areas. The majority of retrogradely labeled cells were located in the prelimbic, infralim-bic, and dorsal peduncular areas of the medial prefrontal cortex. A few cells were also identified in the cingulate, various regions of the orbital, and agranular insular cortices. Secondly, an anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHA-L), was injected into the medial prefrontal cortex involving the prelimbic or infralimbic areas. Axonal fibers with varicosities were identified in all subdivisions of the DR including the lateral wing, dorsomedial, and ventromedial areas. Projections were bilateral, with ipsilateral predominance. Axonal fibers were observed at the lateral border of medial longitudinal fasciculus or in the interfascicular region at the midline. The present findings demonstrate that both the midline and lateral wing regions of the dorsal raphe nucleus receive excitatory input from cognitive and emotional centers of the cerebral cortex.