• Title/Summary/Keyword: Chronic radiation exposure

Search Result 44, Processing Time 0.021 seconds

DIFFERENTIAL EXPRESSION OF RADIATION RESPONSE GENES IN SPLEEN, LUNG, AND LIVER OF RATS FOLLOWING ACUTE OR CHRONIC RADIATION EXPOSURE

  • Jin, Hee;Jin, Yeung Bae;Lee, Ju-Woon;Kim, Jae-Kyung;Lee, Yun-Sil
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.25-35
    • /
    • 2015
  • We analyzed the differential effects of histopathology, apoptosis and expression of radiation response genes after chronic low dose rate (LDR) and acute high dose rate (HDR) radiation exposure in spleen, lung and liver of rats. Female 6-week-old Sprague-Dawley rats were used. For chronic low-dose whole body irradiation, rats were maintained for 14 days in a $^{60}Co$ gamma ray irradiated room and received a cumulative dose of 2 Gy or 5 Gy. Rats in the acute whole body exposure group were exposed to an equal dose of radiation delivered as a single pulse ($^{137}Cs$-gamma). At 24 hours after exposure, spleen, lung and liver tissues were extracted for histopathologic examination, western blotting and RT-PCR analysis. 1. The spleen showed the most dramatic differential response to acute and chronic exposure, with the induction of substantial tissue damage by HDR but not by LDR radiation. Effects of LDR radiation on the lung were only apparent at the higher dose (5 Gy), but not at lower dose (2 Gy). In the liver, HDR and LDR exposure induced a similar damage response at both doses. RT-PCR analysis identified cyclin G1 as a LDR-responsive gene in the spleen of rats exposed to 2 Gy and 5 Gy gamma radiation and in the lung of animals irradiated with 5 Gy. 2. The effects of LDR radiation differed among lung, liver, and spleen tissues. The spleen showed the greatest differential effect between HDR and LDR. The response to LDR radiation may involve expression of cyclin G1.

Survival Rate and Biological Effect of Chronic Medium-Dose-Rate Gamma Radiation Exposed to Mice (장기 중선량률 감마선 피폭에 의한 마우스의 생존율 및 생물학적 영향 평가)

  • Kim, Jae-Kyung;Jin, Yeung Bae;Oh, Su-Mi;Lee, Yun-Jong;Sung, Nak-Yun;Song, Beom-Seok;Park, Jong-Heum;Byun, Eui-Baek;Lee, Ju-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.155-159
    • /
    • 2013
  • Late effects of chronic exposure to gamma radiation are potential hazards to worker in radiation facilities as well as to the general public. Recently, chronic gamma radiation exposure effects have become a serious concern. Using a total of 60 mice, we studied the biological effects of medium-dose chronic exposure to gamma radiation. Sixty female 6-week-old specific pathogen free Balb/c mice were randomly divided into six groups (five groups irradiated and one non-irradiated control group). Irradiation was carried out for 7 days using gamma rays at dose rates of 119.65, 238.10, 357.14, 476.19 and $595.24mGy\;h^{-1}$ with total doses 20, 40, 60, 80 and 100 Gy. After irradiation, we determined survival rate of gamma radiation exposed mice during 1 week and 476.19 and $595.24mGy\;h^{-1}$ exposed group mice showed less 10% of survival rate. Otherwise, 119.65, 238.10 and $357.14mGy\;h^{-1}$ exposed group mice were survived each 100%, 80% and 70%. Half of survived mice after 1 week are immediately sacrifice and counted body and spleen weights. Compared with control non-irradiated group, total body weights and spleen weights isolated from 119.65, 238.10 and 357.14 irradiated group mice showed significant decreased. However, no significant alteration was observed between 119.65, 238.10 and $357.14mGy\;h^{-1}$ irradiated group. Overall, our results show for the first time that medium-dose chronic gamma radiation has the potential to stimulation of biological effects.

The Effect of Sub-chronic Whole-Body Exposure to a 1,950 MHz Electromagnetic Field on the Hippocampus in the Mouse Brain

  • Son, Yeonghoon;Jeong, Ye Ji;Kwon, Jong Hwa;Choi, Hyung-Do;Pack, Jeong-Ki;Kim, Nam;Lee, Yun-Sil;Lee, Hae-June
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.3
    • /
    • pp.151-157
    • /
    • 2015
  • The increasing use of mobile phones has raised public concern about the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on the human brain. To investigate the potential effect of RF-EMF exposure on the brain, we examined the behaviors and hippocampal morphology of C57BL/6 mice after sub-chronic exposure to RF-EMFs with a relatively high SAR level (5.0 W/kg). We applied a 2-hour daily exposure of WCDMA 1,950 MHz using a reverberation chamber that was designed for whole-body exposure for 60 days. In the behavioral tests, RF-EMF did not alter the physical activity or long-term memory of mice. Moreover, no alteration was found in the neuronal and glial cells in the hippocampus by RF-EMFs. In this study, we showed that sub-chronic whole body RF exposure did not produce memory impairment and hippocampal morphological alteration in C57BL/6 mice.

Biological Effects of Different Chronic Medium-Dose-Rate Gamma Radiation Period Exposed on Mice (장기 중선량률의 감마선 피폭 기간에 따른 실험동물의 생물학적 영향 연구)

  • Kim, Jae-Kyung;Jin, Yeung Bae;Oh, Su-Mi;Lee, Yun-Jong;Sung, Nak-Yun;Song, Beom-Seok;Park, Jong-Heum;Byun, Eui-Baek;Lee, Ju-Woon;Kim, Jae-Hun
    • Journal of Radiation Industry
    • /
    • v.7 no.2_3
    • /
    • pp.135-139
    • /
    • 2013
  • Recently, chronic gamma radiation exposure on biological effects in middle dose-rates have become a serious concern. We investigated the biological effects of middle dose chronic exposure to gamma ray. Fifty male 6-week-old specific free Balb/c mice were randomly divided into five groups (four groups irradiated and one non-irradiated control group). Gamma radiation exposed in Gamma phytotron on Advanced Radiation Technology Institute (Jeongeup, Korea). Irradiation was carried out for 1 or 2 weeks using gamma rays at dose rates of 45 and $50mGy\;h^{-1}$ with total doses 7.56 Gy ($45mGy\;h^{-1}$, 1 week), 8.4 Gy ($50mGy\;h^{-1}$, 1 week), 15.12 Gy ($45mGy\;h^{-1}$, 2 weeks) and 16.8 Gy ($50mGy\;h^{-1}$, 2 weeks). After irradiation, immediately we sacrificed and counted body and organ weights. Moreover we counted spleen cell numbers. Compared with control non-irradiated group, all irradiated groups of body and spleen weights showed significant decreased. However, no significant alteration was observed between same irradiated period groups. In spleen cell numbers, reduced compared to the control group. However, significant alteration was observed between same irradiated period groups ($45mGy\;h^{-1}$, $50mGy\;h^{-1}$). These results demonstrated biological effects according to the radiation dose rate and irradiated period.

Effects of Ionizing Radiation on Plants and the Radiological Protection of the Environment

  • Stanislav A. Geras'kin;Kim, Jin-Kyu
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.4
    • /
    • pp.321-327
    • /
    • 2003
  • Differences between the principles for the radiological protection of man and the environment are compared. The derived levels of exposure for man and biota recommended by the international agencies with dose rates for chronic radiation producing effects at different levels of biological organization were given in terms of the biological effects. Cytogenetic effects on plants after an exposure to ionizing radiation at low doses alone and in combination with other factors are discussed. A wide range of experimental data were analysed and the general conclusions were extracted to cover the topics such as non-linearity of dose response, synergistic and antagonistic effects of the combined exposure of different factors, radiation-induced genomic instability, and the phenomena of radioadaptation.

Radiation exposure to the eyes and thyroid during C-arm fluoroscopy-guided cervical epidural injections is far below the safety limit

  • Choi, Eun Joo;Go, Gwangcheol;Han, Woong Ki;Lee, Pyung-Bok
    • The Korean Journal of Pain
    • /
    • v.33 no.1
    • /
    • pp.73-80
    • /
    • 2020
  • Background: The aim of this study was to evaluate radiation exposure to the eye and thyroid in pain physicians during the fluoroscopy-guided cervical epidural block (CEB). Methods: Two pain physicians (a fellow and a professor) who regularly performed C-arm fluoroscopy-guided CEBs were included. Seven dosimeters were used to measure radiation exposure, five of which were placed on the physician (forehead, inside and outside of the thyroid protector, and inside and outside of the lead apron) and two were used as controls. Patient age, sex, height, and weight were noted, as were radiation exposure time, absorbed radiation dose, and distance from the X-ray field center to the physician. Results: One hundred CEB procedures using C-arm fluoroscopy were performed on comparable patients. Only the distance from the X-ray field center to the physician was significantly different between the two physicians (fellow: 37.5 ± 2.1 cm, professor: 41.2 ± 3.6 cm, P = 0.03). The use of lead-based protection effectively decreased the absorbed radiation dose by up to 35%. Conclusions: Although there was no difference in radiation exposure between the professor and the fellow, there was a difference in the distance from the X-ray field during the CEBs. Further, radiation exposure can be minimized if proper protection (thyroid protector, leaded apron, and eyewear) is used, even if the distance between the X-ray beam and the pain physician is small. Damage from frequent, low-dose radiation exposure is not yet fully understood. Therefore, safety measures, including lead-based protection, should always be enforced.

Review of Hazardous Agent Level in Wafer Fabrication Operation Focusing on Exposure to Chemicals and Radiation (반도체 산업의 웨이퍼 가공 공정 유해인자 고찰과 활용 - 화학물질과 방사선 노출을 중심으로 -)

  • Park, Donguk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Objectives: The aim of this study is to review the results of exposure to chemicals and to extremely low frequency(ELF) magnetic fields generated in wafer fabrication operations in the semiconductor industry. Methods: Exposure assessment studies of silicon wafer fab operations in the semiconductor industry were collected through an extensive literature review of articles reported until the end of 2015. The key words used in the literature search were "semiconductor industry", "wafer fab", "silicon wafer", and "clean room," both singly and in combination. Literature reporting on airborne chemicals and extremely low frequency(ELF) magnetic fields were collected and reviewed. Results and Conclusions: Major airborne hazardous agents assessed were several organic solvents and ethylene glycol ethers from Photolithography, arsenic from ion implantation and extremely low frequency magnetic fields from the overall fabrication processes. Most exposures to chemicals reported were found to be far below permissible exposure limits(PEL) (10% < PEL). Most of these results were from operators who handled processes in a well-controlled environment. In conclusion, we found a lack of results on exposure to hazardous agents, including chemicals and radiation, which are insufficient for use in the estimation of past exposure. The results we reviewed should be applied with great caution to associate chronic health effects.

Assessment of the Glycophorin A Mutant Assay as a Biologic Marker for Low Dose Radiation Exposure (저선량 방사선 노출에 대한 생물학적 지표로서 Glycophorin A 변이발현율 측정의 유용성 평가)

  • Ha, Mi-Na;Yoo, Keun-Young;Ha, Sung-Whan;Kim, Dong-Hyun;Cho, Soo-Hun
    • Journal of Preventive Medicine and Public Health
    • /
    • v.33 no.2
    • /
    • pp.165-173
    • /
    • 2000
  • Objectives : To assess the availability of the glycophorin A (GPA) assay to detect the biological effect of ionizing radiation in workers exposed to low-doses of radiation. Methods : Information on confounding factors, such as age and cigarette smoking was obtained on 144 nuclear power plant workers and 32 hospital workers, by a self-administered questionnaire. Information on physical exposure levels was obtained from the registries of radiation exposure monitoring and control at each facility. The GPA mutant assay was performed using the BR6 method with modification by using a FACScan flow cytometer. Results : As confounders, age and cigarette smoking habits showed increasing trends with GPA variants, but these were of no statistical significance. Hospital workers showed a higher frequency of the GPA variant than nuclear power plant workers in terms of the NO variant. Significant dose-response relationships were obtained from in simple and multiple linear regression models. The slope of the regression equation for nuclear power plant workers was much smaller than that of hospital workers. These findings suggest that there may be apparent dose-rate effects. Conclusion : In population exposed to chronic low-dose radiation, the GPA assay has a potential to be used as an effective biologic marker for assessing the bone marrow cumulative exposure dose.

  • PDF

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.