• Title/Summary/Keyword: Chronic noise exposure

Search Result 12, Processing Time 0.016 seconds

Noise-Induced Hearing Loss in the Police Force

  • Win, Kyaw N.;Balalla, Nayake B.P.;Lwin, Min Z.;Lai, Alice
    • Safety and Health at Work
    • /
    • v.6 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • Background: Noise-induced hearing loss (NIHL) is a major preventable occupational health problem with 250 million people worldwide known to have disabling impairment of moderate to greater severity. The aims of the study are to estimate the prevalence of NIHL in the police force; and study its association with age, sex, duration of service (years), smoking and alcohol habits, use of hearing protective devices, as well as preexisting chronic diseases. Methods: A cross-sectional study was conducted on 543 police personnel who had undergone periodic medical examination over a 12-month period. The diagnostic criteria for NIHL were (1) history of occupational noise exposure, (2) bilateral hearing loss, (3) hearing loss of ${\geq}25dBA$ at 4,000 Hz in two consecutive audiograms, and (4) no significant medical history affecting hearing. Severity of NIHL was based on the World Health Organization grading. Results: Males (74.8%) made up the majority of the police force. The mean age for police personnel was $35.55{\pm}9.57years$, and the mean duration of service was $14.75{\pm}9.39years$. Compliance with the usage of hearing protective devices was seen in 64.4%. The prevalence of NIHL in this study population was 34.2%, with a higher prevalence in males (37.7%) than in females (23.9%). The study also showed strong associations between NIHL and male sex (odds ratio, 1.9; P < 0.05), and hypertension (odds ratio, 3.3; P < 0.001). Overall, 93% were found to have mild NIHL, 3.5% had moderate NIHL, and 3.5% had severe NIHL. No police personnel were found to have profound hearing loss. Conclusion: The prevalence of NIHL in this study is high compared to other similar studies among police personnel. This study shows that increasing age, male, presence of hypertension, diabetes, and longer duration of service are significant associated factors for NIHL. Preventative strategies include health surveillance, implementation of a hearing conservation program, and legislation.

An Assessment of the Usefulness of Time of Flight in Magnetic Resonance Angiography Covering the Aortic Arch

  • Yoo, Yeong-Jun;Choi, Sung-Hyun;Dong, Kyung-Rae;Ji, Yun-Sang;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.325-332
    • /
    • 2018
  • Carotid angiography covering the aortic arch includes contrast-enhanced magnetic resonance angiography (CEA), which is applied to a large region and usually employs contrast media. However, the use of contrast media can be dangerous in infants, pregnant women, and patients with chronic renal failure (CRF). Follow-up patients informed of a lesion may also want to avoid constant exposure to contrast media. We aimed to apply time-of-flight (TOF) angiography to a large region and compare its usefulness with that of CEA. Ten patients (mean age, 58 years; range, 45~75 years) who visited our hospital for magnetic resonance angiography (MRA) participated in this study. A 3.0 Tesla Achieva magnetic resonance imaging (MRI) system (Philips, Netherland) and the SENSE NeuroVascular 16-channel coil were employed for both methods. Both methods were applied simultaneously to the same patient. Three TOF stacks were connected to cover the aortic arch through the circle of Willis, and CEA was applied in the same manner. For the quantitative assessment, the acquired images were used to set the regions of interest (ROIs) in the common carotid artery (CCA) bifurcation, internal carotid artery, external carotid artery, middle cerebral artery, and vertebral artery, and to obtain the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) for the soft tissues. Three radiologists and one radiological resident performed the qualitative assessment on a 5-point scale - 1 point, "very bad"; 2 points, "bad"; 3 points, "average"; 4 points, "good"; and 5 points, "very good" - with regard to 4 items: (1) sharpness, (2) distortion, (3) vein contamination, and (4) expression of peripheral vessels. For the quantitative assessment, we estimated the mean SNR and CNR in each of the 5 ROIs. In general, the mean SNR was higher in TOF angiography (166.1, 205.2, 154.39, 172.23, and 161.95) than in CEA(92.05, 95.43, 84.76, 73.69, and 88.3). Both methods had a similar mean CNR: 67.62, 106.71, 55.9, 73.74, and 63.46 for TOF angiography, and 67.82, 71.19, 60.52, 49.45, and 64.07 for CEA. In all ROIs, the mean SNR was statistically significant (p<0.05), whereas the mean CNR was insignificant (p>0.05). The mean values of TOF angiography and CEA for each item in the qualitative assessment were 4.2 and 4.28, respectively for item 1; 2.93 and 4.55, respectively, for item 2; 4.6 and 3.13, respectively, for item 3; and 2.88 and 4.65, respectively, for item 4. Therefore, TOF angiography had a higher mean for item 3, and CEA had a higher mean for items 2 and 4; there was no significant difference between the two methods for item 1. The results for item 1 were statistically insignificant (p>0.05), whereas the results for items 2~4 were statistically significant (p<0.05). Both methods have advantages and disadvantages and they complement each other. However, CEA is usually applied to a large region covering the aortic arch. Time-of-flight angiography may be useful for people such as infants, pregnant women, CRF patients, and followup patients for whom the use of contrast media can be dangerous or unnecessary, depending on the circumstance.