• Title/Summary/Keyword: Chronic constriction injury model

Search Result 14, Processing Time 0.022 seconds

Curcumin Attenuates Chronic Constriction Nerve Injury-Induced Neuropathic Pain in Rats (Curcumin의 신경병증성 통증 억제효과)

  • Kim, Chae-Eun;Park, Eun-Sung;Jeon, Young-Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Nerve injury can lead to neuropathic pain, which is often resistant to current analgesics and interventional therapeutic methods. Extracellular signal-regulated kinase (ERK) plays important role in the induction of neuropathic pain. We explored the antinociceptive effect of curcumin and its effect on ERK in the spinal cord in the neuropathic pain model of rats induced by chronic constriction injury (CCI) of the sciatic nerve. In injured rats, mechanical allodynia, which is one of characteristics of neuropathic pain developed and the activation of ERK in spinal cord significantly increased compared with control group. However, administration of curcumin (50 mg/kg/day p.o) for 7 days started from one day before the injury prevented the development of mechanical allodynia and increase of ERK phosphorylation. These results indicate that curcumin can be a new therapeutic agent in the treatment of neuropathic pain.

Stem cells from human exfoliated deciduous teeth attenuate trigeminal neuralgia in rats by inhibiting endoplasmic reticulum stress

  • Yang, Zhijie;Wang, Chun;Zhang, Xia;Li, Jing;Zhang, Ziqi;Tan, Zhao;Wang, Junyi;Zhang, Junyang;Bai, Xiaofeng
    • The Korean Journal of Pain
    • /
    • v.35 no.4
    • /
    • pp.383-390
    • /
    • 2022
  • Background: The treatment of trigeminal neuralgia remains a challenging issue. Stem cells from human exfoliated deciduous teeth (SHED) provide optimized therapy for chronic pain. This study aimed to investigate the mechanisms underlying the attenuation of trigeminal neuralgia by SHED. Methods: Trigeminal neuralgia was induced by chronic constriction injury of the infraorbital nerve. The mechanical threshold was assessed after model establishment and local SHED transplantation. Endoplasmic reticulum (ER) morphology and Caspase12 expression in trigeminal ganglion (TG) was evaluated as well. BiP expression was observed in PC12 cells induced by tunicamycin. Results: The local transplantation of SHED could relieve trigeminal neuralgia in rats. Further, transmission electron microscopy revealed swelling of the ER in rats with trigeminal neuralgia. Moreover, SHED inhibited the tunicamycin-induced up-regulated expression of BiP mRNA and protein in vitro. Additionally, SHED decreased the up-regulated expression of Caspase12 mRNA and protein in the TG of rats caused by trigeminal neuralgia after chronic constriction injury of the infraorbital nerve mode. Conclusions: This findings demonstrated that SHED could alleviate pain by relieving ER stress which provide potential basic evidence for clinical pain treatment.

The Antiallodynic Effects of Intrathecal Zaprinast in Rats with Chronic Constriction Injury of the Sciatic Nerve (좌골신경 만성협착손상 흰쥐에서 척수강 내로 투여된 Zaprinast의 항이질통 효과)

  • Lee, Jae Do;Jun, In Gu;Choi, Yun Sik;Im, So Hyun;Park, Jong Yeon
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.16-20
    • /
    • 2009
  • Background: Zaprinast is an inhibitor of phosphodiesterase 5, 6 and 9. Phosphodiesterase inhibitors could produce anti-nociceptive effects by promoting the accumulation of cGMP. We hypothesized that intrathecal zaprinast could attenuate the allodynia induced by chronic constriction injury of the sciatic nerve in rat. Methods: Sprague-Dawley rats were prepared with four loose ligations of the left sciatic nerve just proximal to the trifurcation into the sural, peroneal and tibial nerve branches. Tactile allodynia was measured by applying von Frey filaments to the lesioned hindpaw. The thresholds for the withdrawal responses were assessed. Zaprinast ($3-100{\mu}g$) was administered intrathecally by the direct lumbar puncture method to obtain the dose-response curve and the 50% effective dose ($ED_{50}$). Measurements were taken before and 15, 30, 45, 60, 90, 120, and 180 min after the intrathecal doses of zaprinast. The side effects were also observed. Results: Intrathecal zaprinast resulted in a dose-dependent antiallodynic effect. The maximal effects occurred within 15-30 min and then they gradually decreased down to the baseline level over time in all the groups. There was a dose dependent increase in the magnitude and duration of the effect. The $ED_{50}$ value was $17.4{\mu}g$ (95% confidence intervals; $14.7-20.5{\mu}g$). No severe motor weakness or sedation was observed in any of the rats. Conclusions: Intrathecally administered zaprinast produced a dose-dependent antiallodynic effect in the chronic constriction injury neuropathic pain model. These findings suggest that spinal phosphodiesterase 5, 6 and 9 may play an important role in the modulation of neuropathic pain.

Enhanced Expression of TREK-1 Is Related with Chronic Constriction Injury of Neuropathic Pain Mouse Model in Dorsal Root Ganglion

  • Han, Hyo Jo;Lee, Seung Wook;Kim, Gyu-Tae;Kim, Eun-Jin;Kwon, Byeonghun;Kang, Dawon;Kim, Hyun Jeong;Seo, Kwang-Suk
    • Biomolecules & Therapeutics
    • /
    • v.24 no.3
    • /
    • pp.252-259
    • /
    • 2016
  • Neuropathic pain is a complex state showing increased pain response with dysfunctional inhibitory neurotransmission. The TREK family, one of the two pore domain $K^+$ (K2P) channel subgroups were focused among various mechanisms of neuropathic pain. These channels influence neuronal excitability and are thought to be related in mechano/thermosensation. However, only a little is known about the expression and role of TREK-1 and TREK-2, in neuropathic pain. It is performed to know whether TREK-1 and/or 2 are positively related in dorsal root ganglion (DRG) of a mouse neuropathic pain model, the chronic constriction injury (CCI) model. Following this purpose, Reverse Transcription Polymerase Chain Reaction (RT-PCR) and western blot analyses were performed using mouse DRG of CCI model and compared to the sham surgery group. Immunofluorescence staining of isolectin-B4 (IB4) and TREK were performed. Electrophysiological recordings of single channel currents were analyzed to obtain the information about the channel. Interactions with known TREK activators were tested to confirm the expression. While both TREK-1 and TREK-2 mRNA were significantly overexpressed in DRG of CCI mice, only TREK-1 showed significant increase (~9 fold) in western blot analysis. The TREK-1-like channel recorded in DRG neurons of the CCI mouse showed similar current-voltage relationship and conductance to TREK-1. It was easily activated by low pH solution (pH 6.3), negative pressure, and riluzole. Immunofluorescence images showed the expression of TREK-1 was stronger compared to TREK-2 on IB4 positive neurons. These results suggest that modulation of the TREK-1 channel may have beneficial analgesic effects in neuropathic pain patients.

Antinociceptive Effect of Cyperi rhizoma and Corydalis tuber Extracts on Neuropathic Pain in Rats

  • Choi, Jae-Gyun;Kang, Suk-Yun;Kim, Jae-Min;Roh, Dae-Hyun;Yoon, Seo-Yeon;Park, Jin Bong;Lee, Jang-Hern;Kim, Hyun-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.6
    • /
    • pp.387-392
    • /
    • 2012
  • In this study, we examined the antinociceptive effect of Cyperi rhizoma (CR) and Corydalis tuber (CT) extracts using a chronic constriction injury-induced neuropathic pain rat model. After the ligation of sciatic nerve, neuropathic pain behavior such as mechanical allodynia and thermal hyperalgesia were rapidly induced and maintained for 1 month. Repeated treatment of CR or CT (per oral, 10 or 30 mg/kg, twice a day) was performed either in induction (day 0~5) or maintenance (day 14~19) period of neuropathic pain state. Treatment of CR or CT at doses of 30 mg/kg in the induction and maintenance periods significantly decreased the nerve injury-induced mechanical allodynia. In addition, CR and CT at doses of 10 or 30 mg/kg alleviated thermal heat hyperalgesia when they were treated in the maintenance period. Finally, CR or CT (30 mg/kg) treated during the induction period remarkably reduced the nerve injury-induced phosphorylation of NMDA receptor NR1 subunit (pNR1) in the spinal dorsal horn. Results of this study suggest that extracts from CR and CT may be useful to alleviate neuropathic pain.

The Attenuation of Pain Behavior and Serum COX-2 Concentration by Curcumin in a Rat Model of Neuropathic Pain

  • Zanjani, Taraneh Moini;Ameli, Haleh;Labibi, Farzaneh;Sedaghat, Katayoun;Sabetkasaei, Masoumeh
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • Background: Neuropathic pain is generally defined as a chronic pain state resulting from peripheral and/or central nerve injury. There is a lack of effective treatment for neuropathic pain, which may possibly be related to poor understanding of pathological mechanisms at the molecular level. Curcumin, a therapeutic herbal extract, has shown to be effectively capable of reducing chronic pain induced by peripheral administration of inflammatory agents such as formalin. In this study, we aimed to show the effect of curcumin on pain behavior and serum COX-2 level in a Chronic Constriction Injury (CCI) model of neuropathic pain. Methods: Wistar male rats (150-200 g, n = 8) were divided into three groups: CCI vehicle-treated, sham-operated, and CCI drug-treated group. Curcumin (12.5, 25, 50 mg/kg, IP) was injected 24 h before surgery and continued daily for 7 days post-surgery. Behavioral tests were performed once before and following the days 1, 3, 5, 7 after surgery. The serum COX-2 level was measured on day 7 after the surgery. Results: Curcumin (50 mg/kg) decreased mechanical and cold allodynia (P < 0.001) and produced a decline in serum COX-2 level (P < 0.001). Conclusions: A considerable decline in pain behavior and serum COX-2 levels was seen in rat following administration of curcumin in CCI model of neuropathic pain. High concentration of Curcumin was able to reduce the chronic neuropathic pain induced by CCI model and the serum level of COX-2.

Synergistic interaction between acetaminophen and L-carnosine improved neuropathic pain via NF-κB pathway and antioxidant properties in chronic constriction injury model

  • Owoyele, Bamidele Victor;Bakare, Ahmed Olalekan;Olaseinde, Olutayo Folajimi;Ochu, Mohammed Jelil;Yusuff, Akorede Munirdeen;Ekebafe, Favour;Fogabi, Oluwadamilare Lanre;Roi, Treister
    • The Korean Journal of Pain
    • /
    • v.35 no.3
    • /
    • pp.271-279
    • /
    • 2022
  • Background: Inflammation is known to underlie the pathogenesis in neuropathic pain. This study investigated the anti-inflammatory and neuroprotective mechanisms involved in antinociceptive effects of co-administration of acetaminophen and L-carnosine in chronic constriction injury (CCI)-induced peripheral neuropathy in male Wistar rats. Methods: Fifty-six male Wistar rats were randomly divided into seven experimental groups (n = 8) treated with normal saline/acetaminophen/acetaminophen + L-carnosine. CCI was used to induce neuropathic pain in rats. Hyperalgesia and allodynia were assessed using hotplate and von Frey tests, respectively. Investigation of spinal proinflammatory cytokines and antioxidant system were carried out after twenty-one days of treatment. Results: The results showed that the co-administration of acetaminophen and L-carnosine significantly (P < 0.001) increased the paw withdrawal threshold to thermal and mechanical stimuli in ligated rats compared to the ligated naïve group. There was a significant (P < 0.001) decrease in the levels of nuclear factor kappa light chain enhancer B cell inhibitor, calcium ion, interleukin-1-beta, and tumour necrotic factor-alpha in the spinal cord of the group coadministered with acetaminophen and L-carnosine compared to the ligated control group. Co-administration with acetaminophen and L-carnosine increased the antioxidant enzymatic activities and reduced the lipid peroxidation in the spinal cord. Conclusions: Co-administration of acetaminophen and L-carnosine has anti-inflammatory effects as a mechanism that mediate its antinociceptive effects in CCI-induced peripheral neuropathy in Wistar rat.

Blockade of Trigeminal Glutamate Recycling Produces Anti-allodynic Effects in Rats with Inflammatory and Neuropathic Pain

  • Yang, Kui-Ye;Lee, Min-Kyung;Park, Min-Kyoung;Son, Jo-Young;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.42 no.3
    • /
    • pp.129-135
    • /
    • 2017
  • The present study investigated the role of spinal glutamate recycling in the development of orofacial inflammatory pain or trigeminal neuropathic pain. Experiments were carried out on male Sprague-Dawley rats weighing between 230 and 280 g. Under anesthesia, a polyethylene tube was implanted in the atlanto-occipital membrane for intracisternal administration. IL-$1{\beta}$-induced inflammation was employed as an orofacial acute inflammatory pain model. IL-$1{\beta}$ (10 ng) was injected subcutaneously into one vibrissal pad. We used the trigeminal neuropathic pain animal model produced by chronic constriction injury of the infraorbital nerve. DL-threo-${\beta}$-benzyloxyaspartate (TBOA) or methionine sulfoximine (MSO) was administered intracisternally to block the spinal glutamate transporter and the glutamine synthetase activity in astroglia. Intracisternal administration of TBOA produced mechanical allodynia in naïve rats, but it significantly attenuated mechanical allodynia in rats with interleukin (IL)-$1{\beta}$-induced inflammatory pain or trigeminal neuropathic pain. In contrast, intracisternal injection of MSO produced anti-allodynic effects in rats treated with IL-$1{\beta}$ or with infraorbital nerve injury. Intracisternal administration of MSO did not produce mechanical allodynia in naive rats. These results suggest that blockade of glutamate recycling induced pro-nociception in na?ve rats, but it paradoxically resulted in anti-nociception in rats experiencing inflammatory or neuropathic pain. Moreover, blockade of glutamate reuptake could represent a new therapeutic target for the treatment of chronic pain conditions.

Enhancement of Antinociception by Co-administrations of Nefopam, Morphine, and Nimesulide in a Rat Model of Neuropathic Pain

  • Saghaei, Elham;Zanjani, Taraneh Moini;Sabetkasaei, Masoumeh;Naseri, Kobra
    • The Korean Journal of Pain
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2012
  • Background: Neuropathic pain is a chronic pain due to disorder in the peripheral or central nervous system with different pathophysiological mechanisms. Current treatments are not effective. Analgesic drugs combined can reduce pain intensity and side effects. Here, we studied the analgesic effect of nimesulide, nefopam, and morphine with different mechanisms of action alone and in combination with other drugs in chronic constriction injury (CCI) model of neuropathic pain. Methods: Male Wistar rats (n = 8) weighing 150-200 g were divided into 3 different groups: 1- Saline-treated CCI group, 2- Saline-treated sham group, and 3- Drug-treated CCI groups. Nimesulide (1.25, 2.5, and 5 mg/kg), nefopam (10, 20, and 30 mg/kg), and morphine (1, 3, and 5 mg/kg) were injected 30 minutes before surgery and continued daily to day 14 post-ligation. In the combination strategy, a nonanalgesic dose of drugs was used in combination such as nefopam + morphine, nefopam + nimesulide, and nimesulide + morphine. Von Frey filaments for mechanical allodynia and acetone test for cold allodynia were, respectively, used as pain behavioral tests. Experiments were performed on day 0 (before surgery) and days 1, 3, 5, 7,10, and 14 post injury. Results: Nefopam (30 mg/kg) and nimesulide (5 mg/kg) blocked mechanical and thermal allodynia; the analgesic effects of morphine (5 mg/kg) lasted for 7 days. Allodynia was completely inhibited in combination with nonanalgesic doses of nefopam (10 mg/kg), nimesulide (1.25 mg/kg), and morphine (3 mg/kg). Conclusions: It seems that analgesic drugs used in combination, could effectively reduce pain behavior with reduced adverse effects.