• Title/Summary/Keyword: Chromosome deletion

Search Result 136, Processing Time 0.028 seconds

Kleefstra Syndrome: Review of the Literature

  • Rosie Lee;Jung Eun Moon
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2023
  • Kleefstra syndrome is caused by chromosome 9q34.3 deletion or heterozygous mutations in the Euchromatin Histone Methyl Transferase 1 (EHMT1) gene. The prevalence is estimated 1:25,000 to 1:35,000. Intellectual disability, distinctive facial features, hypotonia in childhood can be accompanied. The spectrum of Kleefstra syndrome includes behavioral/psychiatric problems, hearing and visual impairments, seizures, congenital heart defects, genitourinary defects, and obesity. Therefore, it is necessary to understand the pathophysiology and various manifestation of Kleefstra syndrome and discussing with a multidisciplinary team will help diagnose and treat Kleefstra syndrome patients.

Wilms tumor, aniridia, genitourinary anomalies, and mental retardation syndrome with deletion of chromosome 11p14.3p12

  • Seo, Go Hun;Kim, Yoon-Myung;Kim, Gu-Hwan;Seo, Eul-Ju;Choi, Jin Ho;Lee, Beom Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome is a rare contiguous gene deletion syndrome caused by deleting genes including WT1 and PAX6 genes in 11p13 region, which is characterized by Wilms tumor, aniridia, genitourinary abnormalities, and intellectual disability. We report the clinical and cytogenetic characteristics of one Korean patient with WAGR syndrome. The patient shows bilateral sporadic aniridia and genital anomalies at 2 months of age. A heterozygous 14.5 Mb interstitial deletion of 11p14.3p12 region was detected by array comparative genomic hybridization. At 2 years and 10 months of age, Wilms tumor is found through regularly abdominal ultrasonography and treated by chemotherapy, radiation therapy and surgery.

Prenatal diagnosis of a de novo ring chromosome 11

  • Park, Ju-Yeon;Lee, Moon-Hee;Lee, Bom-Yi;Lee, Yeon-Woo;Ryu, Hyun-Mee;Park, So-Yeon
    • Journal of Genetic Medicine
    • /
    • v.4 no.1
    • /
    • pp.80-83
    • /
    • 2007
  • A 36-year-old pregnant woman was referred for amniocentesis at 19.5 weeks gestation because of advanced maternal age and evidence of increased risk for Edward syndrome in the maternal serum screening test. Cytogenetic analysis of the cultured amniotic fluid cells revealed mosaicism for ring chromosome 11: 46,XX,r(11)[65]/ 45,XX,-11[16]/ 46,XX [34]. Parental karyotypes were normal. A targeted ultrasound showed intrauterine grow th restriction (IUGR). Cordocentesis was performed to characterize the ring chromosome and to rule out tissue specific mosaicism. Karyotype was confirmed as 46,XX,r(11) (p15.5q24.2)[229]/45,XX,-11[15]. And a few new form of ring w ere detected in this culture. The deletion of subtelomeric regions in the ring chromosome were detected by fluorescent in situ hybridization (FISH). The pregnancy was terminated. The fetal autopsy showed a growth-retarded female fetus with rocker bottom feet. We report a case of prenatally detected a de novo ring chromosome 11.

  • PDF

KBG Syndrome: Review of the Literature

  • Jisun Park;Ji Eun Lee
    • Journal of Interdisciplinary Genomics
    • /
    • v.5 no.2
    • /
    • pp.13-17
    • /
    • 2023
  • KBG syndrome (KBGS) is a multisystem disorder characterized by short stature, distinctive facial features including macrodontia of upper central permanent incisors, and developmental/cognitive delay. It is caused by variants or deletion of Ankyrin Repeat Domain 11 (ANKRD11) located in chromosome 16q24.3. Since its initial report in 1975, KBG syndrome has been recognized as an exceedingly rare disorder. However, recent advancements in genetic diagnostic techniques have led to an increase in both the diagnosis rate and the number of reported cases, contributing to a rapid increase in its global prevalence. We review the clinical aspects of KBGS, including previously reported and newly reported cases, as well as the related genetic patterns discovered so far.

Creation of an Ethanol-Tolerant Yeast Strain by Genome Reconstruction Based on Chromosome Splitting Technology

  • Park, A-Hwang;Sugiyama, Minetaka;Harashima, Satoshi;Kim, Yeon-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.184-189
    • /
    • 2012
  • We sought to breed an industrially useful yeast strain, specifically an ethanol-tolerant yeast strain that would be optimal for ethanol production, using a novel breeding method, called genome reconstruction, based on chromosome splitting technology. To induce genome reconstruction, Saccharomyces cerevisiae strain SH6310, which contains 31 chromosomes including 12 artificial mini-chromosomes, was continuously cultivated in YPD medium containing 6% to 10% ethanol for 33 days. The 12 mini-chromosomes can be randomly or specifically lost because they do not contain any genes that are essential under high-level ethanol conditions. The strains selected by inducing genome reconstruction grew about ten times more than SH6310 in 8% ethanol. To determine the effect of mini-chromosome loss on the ethanol tolerance phenotype, PCR and Southern hybridization were performed to detect the remaining mini-chromosomes. These analyses revealed the loss of mini-chromosomes no. 11 and no. 12. Mini-chromosome no. 11 contains ten genes (YKL225W, PAU16, YKL223W, YKL222C, MCH2, FRE2, COS9, SRY1, JEN1, URA1) and no. 12 contains fifteen genes (YHL050C, YKL050W-A, YHL049C, YHL048C-A, COS8, YHLComega1, ARN2, YHL046W-A, PAU13, YHL045W, YHL044W, ECM34, YHL042W, YHL041W, ARN1). We assumed that the loss of these genes resulted in the ethanol-tolerant phenotype and expect that this genome reconstruction method will be a feasible new alternative for strain improvement.

The spectrum of 5p deletion in Korean 20 patients with Cri du chat syndrome (한국인 묘성증후군 20명 환자에서의 5p 결실 양상 분석)

  • Park, Sang-Jin;Kim, Sook-Ryung;Baek, Kum-Nyeo;Yoon, Joon-No;Jeong, Eun-Jeong;Kown, Ji-Eun;Kim, Hyon-J.
    • Journal of Genetic Medicine
    • /
    • v.4 no.2
    • /
    • pp.133-141
    • /
    • 2007
  • Purpose : Cri-du-Chat syndrome (CdCs) is a rare but clinically recongnizable condition with an estimated incidence of 1:50,000 live births. The clinical characteristics of the syndrome include severe psychomotor and mental retardation, microcephaly, hypertelorism, hypotonia, and slow growth. Also the size of the chromosome 5p deletion ranges were known from the region 5p13 to the terminal region. In this study, we report the spectrum of 5p deletion in Korean 20 pts. with CdCs and genotype-phenotype associations in CdCs. Methods : In order to delineate genotype-phenotype correlation, molecular cytogenetic studies including GTG banding and clinical characterization were performed on Korean 20 pts with CdCs including parents. CGH array and Fluorescence in situ hybridization (FISH) analysis were used to confirm a terminal deletion karyotype and map more precisely the location of the deletion breakpoint. Results : Molecular analysis of the spectrum of 5p deletion revealed 9 pts (45%) with a del (5)(p14), 7 pts. (35%) a del (5)(p13), 3 pts. (15%) a del (5)(p15.1) and 1 pt. (5%) a del (5)(p15.2) in 20 pts with CdCs. 4(20%)pts were identified to have additional chromosome abnormalites of deficiency and duplication involving chromosomes of 6, 8, 18, & 22. Parental study identified 3 familial case (2 paternal and 1 maternal origin) showing parents being a balanced translocation carrier. And the comparison study of the deletion break points among these 20 pts. with their phenotype has showed the varying clinical pheno-types in the CdCs critical region. Conclusion : The characterization of 5p deletion including parental study may help to delineate the genotypephenotype correlation in CdCs. Also these molecular cytogenetic analyses will be able to offer better information for accurate genetic diagnosis in CdCs and further make possible useful genetic counseling in pts. and family.

  • PDF

14q32.33 Deletion Identified by array-CGH in a 5-year old-girl with Seizure

  • Cheon, Chong-Kun;Park, Sang-Jin;Choi, Ook-Hwan
    • Journal of Genetic Medicine
    • /
    • v.8 no.1
    • /
    • pp.62-66
    • /
    • 2011
  • Deletions of 14q including band 14q32.33 are uncommon. Patients with terminal deletions of chromosome 14 usually share a number of clinical features. By molecular techniques (array comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH), we identified a young girl with 0.3 Mb terminal 14q32.33 deletion. Review of the nine cases with pure terminal 14q32.3 deletions described to date documented that our observation is the smallest terminal 14q deletion ever reported. The phenotype of our patient is much less severe than the phenotypes of the patients reported previously. We report our experience in examining the clinical, behavioral, and cognitive findings in a 5-year-old girl studied with chromosomal microarray hybridization and reviewed previously reported patients with 14q32 deletions.

Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals (환경 오염물질의 진보된 독성 평가 기법)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR) syndrome: Successful treatment of the first case with bilateral Wilms' tumors in Korea (윌름즈 종양, 무홍체증, 비뇨생식기계 기형, 정신지체 (WAGR) 증후군 : 양측성 윌름즈 종양을 성공적으로 치료한 국내 첫 증례 보고)

  • Min, Kyung Sun;Baek, Hee Jo;Han, Dong Kyun;You, Ju Hee;Hwang, Tai Ju;Kwon, Dong Deuk;Kook, Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.12
    • /
    • pp.1355-1358
    • /
    • 2008
  • Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation (WAGR) syndrome is caused by deletion of chromosome 11p13, including the Wilms' tumor (WT1) and aniridia gene (PAX6) loci. Here, we report the first case of WAGR syndrome in Korea; the patient was a 2-year-old girl with bilateral aniridia from birth who presented with abdominal distention and mental retardation. Cytogenetically, she had deletion of chromosome 11p11.2-13. Bilateral Wilms' tumors were successfully treated by chemotherapy and surgery. She has been tumor-free for 19 months off chemotherapy with preserved renal function.

Development of succinate producing Cellulomonas flavigena mutants with deleted succinate dehydrogenase gene

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.30-39
    • /
    • 2017
  • This study was performed to produce succinic acid from biomass by developing mutants of Cellulomonas flavigena in which the succinate dehydrogenase gene (sdh) is deleted. For development of succinate producing mutants, the upstream and downstream regions of sdh gene from C. flavigena and antibiotic resistance gene (neo, bla) were inserted into pKC1139, and the recombinant plasmids were transformed into Escherichia coli ET12567/pUZ8002 which is a donor strain for conjugation. C. flavigena was conjugated with the transformed E. coli ET12567/pUZ8002 to induce the deletion of sdh in chromosome of this bacteria by double-crossover recombination. Two mutants (C. flavigena H-1 and H-2), in which sdh gene was deleted in the chromosome, were constructed and confirmed by PCR. To estimate the production of succinic acid by the two mutants when the culture broth was fermented with biomass such as CMC, xylan, locust gum, and rapeseed straw; the culture broth was analyzed by HPLC analysis. The succinic acid in the culture broth was not detected as a fermentation products of all biomass. One of the reasons for this may be the conversion of succinic acid to fumaric acid by sdh genes (Cfla_1014 - Cfla_1017 or Cfla_1916 - Cfla_1918) which remained in the chromosomal DNA of C. flavigena H-1 and H-2. The other reason could be the conversion of succinyl-CoA to other metabolites by enzymes related to the bypass pathway of TCA cycle.