• 제목/요약/키워드: Chromosome deletion

검색결과 136건 처리시간 0.033초

Glycerol Kinase 결핍증 (Isolated Glycerol Kinase Deficiency)

  • 최중완;이예승;배은주;오필수;박원일;이홍진
    • 대한유전성대사질환학회지
    • /
    • 제13권1호
    • /
    • pp.57-61
    • /
    • 2013
  • Glycerol kinase 결핍증(GKD)은 X-linked 열성유전되는 질환으로 생화학적으로 혈중 glycerol이 상승되고 소변으로 glycerol이 분비되는 질환이다. GK 유전자는 X chromosome 단완의 21.3 region에 위치하며, AHC gene과 DMD gene 사이에 직렬로 위치하고 있다. 만약 이부위에 긴 부분의 결손이 발생하면 이들 질환이 동시에 발생하게 되며, 이를 contiguous gene deletion syndrome이라고 부른다. 국내에서는 이 세 질환이 동시에 나타나는 contiguous gene deletion syndrome은 보고된 바 있으나 GK 결핍증만 단독으로 있었던 경우는 보고가 없었다. 저자들은 장염후의 고이화상태에서 저혈당과 의식의 혼탁으로 발현된 단독 GK 결손증을 보고하는 바이다.

  • PDF

A case of follow-up of a patient with 22q11.2 distal deletion syndrome and a review of the literature

  • Ha, Dong Jun;Park, Ji Sun;Jang, Woori;Jung, Na-young;Kim, Su Jin;Moon, Yeonsook;Lee, Jieun
    • Journal of Genetic Medicine
    • /
    • 제18권2호
    • /
    • pp.110-116
    • /
    • 2021
  • Microdeletions of chromosome 22q11.2 are one of the most common microdeletions occurring in humans, and is known to be associated with a wide range of highly variable features. These deletions occur within a cluster of low copy repeats (LCRs) in 22q11.2, referred to as LCR22 A-H. DiGeorge (DGS)/velocardiofacial syndrome is the most prevalent form of a 22q11.2 deletions, caused by mainly proximal deletions between LCR22 A and D. As deletions of distal portion to the DGS deleted regions has been extensively studied, the recurrent distal 22q11.2 microdeletions distinct from DGS has been suggested as several clinical entities according to the various in size and position of the deletions on LCRs. We report a case of long-term follow-up of a female diagnosed with a 22q11.2 distal deletion syndrome, identified a deletion of 1.9 Mb at 22q11.21q11.23 (chr22: 21,798,906-23,653,963) using single nucleotide polymorphism array. This region was categorized as distal deletion type of 22q11.2, involving LCR22 D-F. She was born as a preterm, low birth weight to healthy non-consanguineous Korean parents. She showed developmental delay, growth retardation, dysmorphic facial features, and mild skeletal deformities. The patient underwent a growth hormone administration due to growth impairment without catch-up growth. While a height gain was noted, she had become overweight and was subsequently diagnosed with pre-diabetes. Our case could help broaden the genetic and clinical spectrum of 22q11.2 distal deletions.

포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay (In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells)

  • 류재천;김경란;최윤정
    • 한국환경성돌연변이발암원학회지
    • /
    • 제19권1호
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Prenatal diagnosis of the Wolf-Hirschhorn syndrome

  • Lee, Moon-Hee;Park, So-Yeon;Ryu, Hyun-Mee;Hong, Sung-Ran;Lee, Young-Ho;Choi, Soo-Kyung
    • Journal of Genetic Medicine
    • /
    • 제2권2호
    • /
    • pp.49-51
    • /
    • 1998
  • Wolf-Hirschhorn syndrome (WHS) is caused by a deletion of the short arm on chromosome 4 and is characterized by multiple congenital abnormalities, growth and mental retardation. In this case report, we performed amniocentesis for the chromosome analysis on a 25-year-old pregnant woman at 16 weeks of gestation whom we suspected of Edward's syndrome by the triple test of maternal serum and ultrasonography. The result of analysis revealed a karyotype of the fetus with 46,XY,del(4)(p15) by trypsin Giemsa's banding technique. With the result, we were able to diagnose the fetus as having WHS. As such, after therapeutic termination of the pregnancy, we confirmed WHS through the sampling of tissue by both trypsin Giemsa's banding and fluorescence in situ hybridization (FISH) method. To determine the origin of the WHS, we further tested the karyotypes of the parents. As parental karyotypes were found to be normal, we determined the case of the fetal WHS to be de novo.

  • PDF

13번 염색체다형성에 기인된 다발성선천성기형증 1례 보고와 고찰 (A Case of Multiple Congenital Anomalies due to Polymorphism of Chromosome 13)

  • 김윤식
    • 대한임상검사과학회지
    • /
    • 제39권2호
    • /
    • pp.63-67
    • /
    • 2007
  • A ring, monosomy and marker chromosome 13 was found in a 14 months old male with multiple congenital anomalies which suggested the deletion 13 syndrome. He presented development retardation, mental retardation, syndactyly of thumbs, xeroderma, dyspnea, dyslogia and face deformity diagnosed by chromosomal analysis using synchronized G-banding technique which revealed of 46,XY,r(13)(p13q34)[48]/45,XY,-13[28]/46,XY,-13,+mar[13]. We report this case with a brief review of the correlation between clinical features and the observed 13 polymorphism chromosome.

  • PDF

종양세포(腫瘍細胞)의 염색체(染色體)에 대한 오크라톡신 A의 독성(毒性)에 관한 연구(硏究) (Studies on toxicity of ochratoxin A to chromosomes of turmor cell-line)

  • 윤화중;노민희;김강련
    • 대한수의학회지
    • /
    • 제29권2호
    • /
    • pp.51-57
    • /
    • 1989
  • This study was performed to investigate the toxicity of ochratoxin A (OA) to the chromosomes of $K_{562}$ tumor cell-line in vitro. The results of this experiment were as follows: 1) Chromosomes of $K_{562}$tumor cell-line resulted in pseudotriploidy on the control group. Chromosomes of $K_{562}$ tumor cell-line treated with OA resulted in heteroploidy compared with the control group. The mean number of chromosomes in the karyotype of the control group (60) were 7 in the A group, 5 in the B group, 20 in the C+X group, 7 in the D group, 9 in the E group, 6 in the F group, and 6 in the G+Y group respectively. The number of chromosomes were increased as follows: Treating with $0.7{\mu}M$ OA, the number of chromosomes were increased one in E and F group, two in G+Y group compared with control group. In treated with $1.5{\mu}M$ OA, the increasing number of chromosome was one in E and F group. In treated with $3{\mu}M$ OA, E and F group was increased one and G+Y group were increased two chromosomes compared with control group. But in treated with $6{\mu}M$ OA, the number of chromosome in G+Y group was decreased one. 2) $K_{562}$ tumor cell line treated with OA showed Philadelphia-Chromosome in the long arm of the G group karyotype chromosome. The rate of chromosome aberration in $K_{562}$ tumor cell-line treated with OA was 77% in $0.7{\mu}M$ OA group, 71% in $1.5{\mu}M$ OA group, 82% in $3{\mu}M$ OA group and 94% in $6{\mu}M$ OA group respectively. The rate of chromosome aberration of $K_{562}$ tumor cell-line treated with OA was high in the high dose level of OA, and chromosome aberration of $K_{562}$ tumor cell-line treated with OA showed deletion, minute, dicentric-chromosome and translocation in the long arm of the C-group karyotype. As a result of this study, the toxicity of OA showed deletion, minute, dicentric-chromosome and translocation in the long arm of the C-group karyotype, and then, the toxicity of OA resulted in the damage to RNA and protein synthesis in $K_{562}$ tumor cell-line, and the C-group karyotype of $K_{562}$ tumor cell-line was target of the toxicity of OA.

  • PDF

Characterization of the porcine Nanog 5'-flanking region

  • Memon, Azra;Song, Ki-Duk;Lee, Woon Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권3호
    • /
    • pp.449-456
    • /
    • 2018
  • Objective: Nanog, a homeodomain protein, has been investigated in humans and mice using embryonic stem cells (ESCs). Because of the limited availability of ESCs, few studies have reported the function and role of Nanog in porcine ESCs. Therefore, in this study, we investigated the location of the porcine Nanog chromosome and its basal promoter activity, which might have potential applications in development of ESCs specific marker as well as understanding its operating systems in the porcine. Methods: To characterize the porcine Nanog promoter, the 5'-flanking region of Nanog was isolated from cells of mini-pig ears. BLAST database search showed that there are two porcine Nanog genomic loci, chromosome 1 and 5, both of which contain an exon with a start codon. Deletion mutants from the 5'-flanking region of both loci were measured using the Dual-Luciferase Reporter Assay System, and a fluorescence marker, green fluorescence protein. Results: Promoter activity was detected in the sequences of chromosome 5, but not in those of chromosome 1. We identified the sequences from -99 to +194 that possessed promoter activity and contained transcription factor binding sites from deletion fragment analysis. Among the transcription factor binding sites, a Sp1 was found to play a crucial role in basal promoter activity, and point mutation of this site abolished its activity, confirming its role in promoter activity. Furthermore, gel shift analysis and chromatin immunoprecipitation analysis confirmed that Sp1 transcription factor binds to the Sp1 binding site in the porcine Nanog promoter. Taken together, these results show that Sp1 transcription factor is an essential element for porcine Nanog basal activity the same as in human and mouse. Conclusion: We showed that the porcine Nanog gene is located on porcine chromosome 5 and its basal transcriptional activity is controlled by Sp1 transcription factor.

Diagnostic distal 16p11.2 deletion in a preterm infant with facial dysmorphism

  • Hyun, Ju Kyung;Jung, Yu Jin
    • Journal of Genetic Medicine
    • /
    • 제15권2호
    • /
    • pp.115-119
    • /
    • 2018
  • The 16p11.2 microdeletion has been reported in patients with developmental delays and intellectual disability. The distal 220- kb deletion in 16p11.2 is associated with developmental delay, autism spectrum disorder, epilepsy, and obesity at a young age. We have reported a case of distal 16p11.2 deletion syndrome in a preterm infant with unusual facial morphology and congenital heart disease. We suggest using chromosome microarray analysis to detect chromosomal abnormalities in newborns, especially preterm infants with unusual morphologies.

Fluorescence-in-situ-hybridization in the Surveillance of Urothelial Cancers: Can Use of Cystoscopy or Ureteroscopy be Deferred?

  • Ho, Christopher Chee Kong;Tan, Wei Phin;Pathmanathan, Rajadurai;Tan, Wei Keith;Tan, Hui Meng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4057-4059
    • /
    • 2013
  • Background: Fluorescence in situ hybridization (FISH) testing may be useful to screen for bladder carcinoma or dysplasia by detecting aneuploidy chromosomes 3, 7, 17 and deletion of the chromosome 9p21 locus in urine specimens. This study aimed to assess the sensitivity, specificity, positive and negative predictive value of FISH in a multi-ethnic population in Asia. Materials and Methods: Patients with haematuria and/or past history of urothelial cancer on follow-up had their voided urine tested with FISH. Patients then underwent cystoscopy/ureteroscopy and any lesions seen were biopsied. The histopathological reports of the bladder or ureteroscopic mucosal biopsies were then compared with the FISH test results. Results: Two hundred sixty patients were recruited. The sensitivity and specificity of the FISH test was 89.2% and 83.4% respectively. The positive (PPV) and negative predictive values (NPV) were 47.1% and 97.9%. By excluding patients who had positive deletion of chromosome 9, the overall results of the screening test improved: sensitivity 84.6%; specificity 96.4%; PPV 75.9% and NPV 97.9%. Conclusions: UroVysion FISH has a high specificity of detecting urothelial cancer or dysplasia when deletion of chromosome 9 is excluded. Negative UroVysion FISH-tests may allow us to conserve health resources and minimize trauma by deferring cystoscopic or ureteroscopic examination.