• Title/Summary/Keyword: Chromosomal aberration test

Search Result 81, Processing Time 0.024 seconds

Genotoxicity Evaluation of the Glycyrrhiza New Variety extract (감초 신품종 추출물의 유전독성 평가)

  • Young-Jae Song;Dong-Gu Kim;Jeonghoon Lee;Wonnam Kim;Hyo-Jin An;Jong-Hyun Lee;Jaeki Chang;Sa-Haeng Kang;Yong-Deok Jeon;Jong-Sik Jin
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.67-67
    • /
    • 2021
  • The genus Glycyrrhiza (Licorice) has been used as an oriental herbal medicine for a long time in Asian countries. Wongam (WG), which is Glycyrrhiza new variety, have been developed to improve limitation of licorice including low productivity, environmental restriction and insufficient components by Korea Rural Development Administration. To using WG as a herbal medicine, it is important to reveal the adverse effects in health. In this study, we evaluated the genotoxicity test of WG extract through in vitro bacterial reverse mutation (AMES) assay, in vitro chromosomal aberration assay and in vivo mouse bone marrow micronucleus assay. When compared with the control, WG extract with or without the S9 mix showed no genotoxicity in the AMES assay up to 5000 ㎍/plate and in the chromosomal aberration assay up to 1100 ㎍/ml. In micronucleus assay, no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes up to 5000 mg/kg/day for 2 days. The present study demonstrated that WG extract is safe and reliable herbal medicine since no detectable genotoxic effects at least under the conditions of this study.

  • PDF

Genotoxicity Studies of STB-HO-BM, a Germanium Complex (게르마늄 복합물인 STB-HO-BM에 대한 유전독성에 관한 연구)

  • Song Si-Whan;Jung Winston;Hong Dong-Ho
    • Toxicological Research
    • /
    • v.22 no.2
    • /
    • pp.145-151
    • /
    • 2006
  • We have investigated the genotoxicity of STB-HO-BM using in vitro and in vivo system such as Ames reverse mutation test, chromosomal aberration test and micronucleus test. in Ames reverse mutation test, STB-HO-BM treatment at the dose range up to 5,000 ug/plate did not induce mutagenicity in Salmonella typhimurium TA98, TA100, TA102, TA1535, TA 1537 and in Escherichia coli WP2 uvrA with and without metabolic activation. Any significant aberration wasn't observed in chinese hamster lung (CHL) fibroblast cells treated with STB-HO-BM at the concentration of 12.5, 2.5, 5 mg/ml both in the absense and presence of metabolic activation system. In mouse micrnucleus test, no significant increase in the occurrence of micronucleated polychromatic erythrocytes was observed in ICR male mice orally administered with STB-HO-BM at the doses of 0.5, 1.0, 2.0 g/kg. These results indicate that STB-HO-BM has no mutagenic potential under the condition in this study.

Mutagenicity of Typhoid Vaccine

  • Li, Guang-Xun;Kang, Byeong-Cheol;Lee, Won-Woo;Ihm, Jong-Hee;Jung, Ji-Youn;Lee, Yong-Soon
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.75-78
    • /
    • 1999
  • In order to evaluate the mutagenic potential of Typhoid vaccine, 3 sets of mutagenicity tests were performed. In the reverse mutation test using Salmonella typhimurium TA98, TA100, TA1535 and TA1537, Typhoid vaccine did not increase the number of revertant at the doses of 100, 50, 25, 12.5, 6.25 $\mu\textrm{g}$/plate. I n chromosome aberration analysis using CHO cells were not found chromosomal aberration in different concentrations with or without metabolic activation at the doses of 0.25 mg/ml, 0.5mg/ml, 1mg/ml. In mouse micronucleus test, no significant increase in the occurrence of micronucleated polychromatic erythrocytes was observed in ICE male mice intramuscularly administered with Typhoid vaccine at the dosed of 0.1 mg/ml, 0.5 mg/ml, 1mg/ml. These results indicate that Typhoid vaccine gas no mutagenic potential in these in vitro and in vivo systems.

  • PDF

Genotoxicity Tests on Hyrubicin ID6105, a Novel Anthracycline Anticancer Agent (새로운 Anthracycline계 항암제 Hyrubicin ID6105에 대한 유전독성연구)

  • 장호송;정미숙;이홍섭;유정수;김태영;김윤배;강종구
    • Toxicological Research
    • /
    • v.18 no.4
    • /
    • pp.385-391
    • /
    • 2002
  • The genotoxic potential of Hyrubicin lD6105, a novel anthracycline anticancer agent, was examined on bacterial mutagenicity, mammalian cell chromosome aberration and mouse micronucleus tests. In mutagenicity (Ames') test, Salmonella typhimurium strain TA98, TA100, TA1535 and TA1537, and Escherichia coli WP2uvrA- were treated with ID6105 at doses of 312.5, 625, 1,250, 2,500 and 5,000 $\mu\textrm{g}$/ plate with or without a metabolic activation system (S9 mix). Interestingly, ID6105 significantly enhanced the number of revertant colonies of TA98 strain at all dose levels used, in the presence or absence of S9 mix, without affecting other strains of S. typhimurium and E. coli. In chromosome aberration test using cultured chinese hamster lung fibroblasts, ID6105 (1.25, 2.5 and 5 $\mu\textrm{g}$/ml) did not increase the number of aberrant cells, compared with vehicle control. in the presence or absence of S9 mix. In addition, ID6105 treatment (2.5, 5 and 10 mg/kg) did not induce micronucleated polychromatic erythrocytes in mice. Taken together, it is suggested that ID6105 might not affect chromosome integrity in mammalian system in vitro and in vivo, although it may induce frame shift mutation of specific bacterial strain such os S. typhimurium TA98.

Single Dose Oral Toxicity and Genotoxicological Safety Study of Ssanghwa-tang Fermented with Lactobacillus acidophyllus (유산균 발효 쌍화탕에 대한 단회 투여 경구 독성 및 유전 독성 연구)

  • Chung, Tae-Ho;Shim, Ki-Shuk;Kim, Dong-Seon;Lee, Jae-Hoon;Ma, Jin-Yeul
    • The Journal of Korean Medicine
    • /
    • v.32 no.1
    • /
    • pp.67-83
    • /
    • 2011
  • Objectives: The purpose of this study was to examine the single dose toxicity with oral administration and genotoxicities of Ssanghwa-tang fermented with Lactobacillus acidophyllus. Materials and Methods: Clinical signs, weight changes, lethal doses$(LD_{50})$, and postmortem evaluation were determined by Globally Harmonized Classification System(GHCS) in a single-dose oral toxicity study. In vitro mammalian chromosomal aberration test was conducted with Ames test by cell proliferation suppression assessment using the cultivated CHO-K1(Chinese hamster ovary fibroblast) origins. Bacterial reversion assay was performed using Salmonella typhimurium (TA98, TA100, TA1535, and TA1537) and Escherichia coli (WP2uvrA). In vivo micronucleus test was performed using ICR mouse bone marrow. Results: No clinical sign was observed and none of the groups with doses up to 2000 mg/kg showed significant acute oral toxicity in the single dose oral administration. None of the sample doses taken during the 6 to 18 hour groups showed significant aberrant metaphases comparing to the negative control group in the in vitro mammalian chromosomal aberration test. No evidence of mutagenicity was seen for Escherichia coli (WP2uvrA) or Salmonella typhimurium (TA98, TA100, TA1535, and TA1537). No significant increase in the frequency of micronuclei was seen in the micronucleus test. Conclusion: These results indicate that the $LD_{50}$ value of Ssanghwa-Tang fermented with Lactobacillus acidophyllus may be over 2000 mg/kg and it have no acute oral toxicity and genotoxicity.

The Evaluation of Antifungal Activities and Safeties of 6-(3,4-Dichlorophenyl)amino-7chloro-5,8-quinolinedione (6-(3,4-디클로로페닐)아미노-7-클로로-5,8퀴놀린디온의 항진균작용 및 안전성 평가)

  • Yun, Yeo-Pyo;Kim, Dong-Hyun;Lee, Byung-Mu;Heo, Moon-Young;Chung, Hae-Moon;Kang, Hye-Young;Choi, Jung-Ah;Kim, Do-Hee;Ryu, Chung-Kyu
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.527-533
    • /
    • 1998
  • 6-(3,4-Dichlorophenyl)amino-7-chloro-5,8-quinolinedione (RCK50) was tested for antifungal activities in mice systemically infected with Candida albicans. The therapeutic potential of RCK50 was also assessed in comparison with ketoconazole. CK50 had $ED_{50}$ 0.22${\pm}$0.01mg/kg. Ketoconazole as a positive control had $ED_{50}$ 6.00${\pm}$1.70mg/kg. Intraperitoneally administered RCK50 at the $ED_{50}$ for 7 days and 14 days reduced Candida albicans colony count in the kidneys and liver. And administered RCK50 at the $ED_{50}$ for 14 days improved survival rates. The genotoxicities of RCK50 had been evaluated. RCK50 was negative in Ames test with Salmonella typhimurium and chromosomal aberration test in CHL cells. RCK50 did not show any clastogenic effect in mouse peripheral blood and was negative in mouse micronucleus assay. These results indicate that RCK50 has no genotoxic potential under these experimental conditions. Acute oral toxicity studies of RCK50 were carried out in ICR mice of both sexes. RCK50 did not show acute oral toxicities and $LD_{50}$ values were over 2,850mg/kg in ICR mice.

  • PDF

Genotoxicity Study of HM10411, Recombinant Human Granulocyte Colony Stimulating Factor (재조합 인과립구 콜로니 자극인자 HM10411의 유전독성 연구)

  • 권정;이미가엘;홍미영;조지희;정문구;권세창;이관순
    • Biomolecules & Therapeutics
    • /
    • v.10 no.4
    • /
    • pp.268-273
    • /
    • 2002
  • Mutagenic potential of HM10411 (recombinant human granulocyte colony stimulating factor) was evaluated by bacterial reverse mutation test, in vitro chromosome aberration test and in vivo micronucleus test. The bacterial reverse mutation test was performed using the histidine auxotroph strains of Salmonella typhimurium TA100, TA1535, TA98, TA1537 and tryptophan auxotroph strain of Escherichia coli WP2 uvrA. The negative results of the bacterial reverse mutation test suggest that HM10411 does not induce mutation, in the genome of Salmonella typhimurium and E. coli under the conditions used. In addition, it has little clastogenicity either in vitro chromosome aberration test or in vivo micronucleus test. For in vitro chromosomal aberration test, Chinese hamster lung(CHL) cells were exposed to HM10411 of 23, 46 or 92 $\mu\textrm{g}$/ml for 6 or 24 hours in the absence and for 6 hours in the presence of metabolic activation system. There was no significant increase in the number of aberrant metaphase in HM 10411-treated groups at any dose levels both in the presence and absence of metabolic activation system. The micronucleus test was carried out using specific pathogen free(SPF) 7-week old male ICR mice, The test item, HM10411 was intraperitoneally administered at 1150, 2300 or 4600 $\mu\textrm{g}$/kg once a day for 2 consecutive days. There was no significant increase in the frequencies of micronucleated polychromatic erythrocytes(PCEs) at any treated groups compared with negative control group. Therefore, these results demonstrate that the test item, HM10411, was not mutagenic under the condition of these studies.

Comparison of L5178Y tk+/- Mouse Lymphoma Assay and In vitro Chromosome Aberration Test

  • Lee, Michael;Jung Kwon;Cho, Ji-Hee;Hong, Mi-Young;Kim, Eun-Joo;Junghee Han;Chung, Moon-Koo;Han, Sang-Seop
    • Toxicological Research
    • /
    • v.18 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • The mouse lymphoma assay (MLA) has been recently validated as a sensitive and specific test system to determine the genotoxic potential for a chemical. The objective of this study is to evaluate the utility of MLA for detecting mutagens. Especially, to compare MLA with the in vitro chromosomal aberration test (CA), we performed MLA using the microwell method with three chemicals (hydroxyurea, theophylline and amino acid copper complex), which were reportedly positive in the CA. In cell treated with hydroxyurea, anti-neoplastic agent that blocks DNA replication, evidence of a positive response was obtained without S9 mix for 4 h and 24 h. In addition, analysis of colony size distribution at concentration that gave an elevated mutant fraction showed that hydroxyurea induced a high proportion of small type colonies, indicating that hydroxyurea-induced mutation is associated with large chromosomal deletion. Conversely, negative MLA result was obtained for theophylline, which was wed as central nervous system stimulator. Although theophylline increased the mutant frequency at concentration of 1250 $\mu\textrm{g}$/$\textrm{m}{\ell}$ with S9 mix for 4 h, a concentration-related increase in mutant frequency was not observed. The MLA result of amino acid copper complex was considered equivocal because the positive result was obtained at concentration showing 10% or less RS or RTG. Thus, among 3 CA-positive chemicals, positive MLA result was obtained for one. The other two chemicals were negative and equivocal. However MLA, which evaluates mutagenic potential of chemicals through colony formation by cell grouth, may provide a higher predictivity of carcinogenesis than CA.

Genotoxicity Studies on Carrageenan: Short-term In Vitro Assays

  • Chung, Young-Shin;Eum, Ki-Hwan;Choi, Seon-A;Oh, Se-Wook;Park, Sue-Nie;Yum, Young-Na;Kim, Joo-Hwan;Seo, Young-Rok;Lee, Michael
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.51-58
    • /
    • 2009
  • Carrageenan is a naturally-occurring sulfated polygalactan which has been widely used in the dairy industry and a gelling agent in non-dairy products. In this study, four short-term in vitro genotoxicity assays were investigated to evaluate the potential genotoxic effects of carrageenan. The mutagenicity of carrageenan was evaluated up to a maximum dose of 5 mg/plate in Ames test. There was no increase in the number of revertant colonies compared to its negative control at any dose in all of strains tested. To assess clastogenic effect, the in vitro chromosomal aberration assay was performed using Chinese hamster lung cells. Carrageenan was not considered to be clastogenic in this assay at up to the highest feasible concentration which could be evaluated. The in vitro comet assay and micronucleus test results obtained on L5178Y cells also revealed that carrageenan has no genotoxicity potential, although there was a marginal increase in micronuclei frequencies and DNA damage in the respective micronucleus and comet assays. Taken together, our results indicate that carrageenan was not genotoxic based on four in vitro genotoxicity results.