• Title/Summary/Keyword: Chromium-carbon-phosphorus

Search Result 2, Processing Time 0.016 seconds

Electro-deposition and Crystallization Behaviors of Cr-C and Cr-C-P Alloy Deposits Prepared by Trivalent Chromium Sulfate Bath (황화물계 3가 크롬도금욕에서 크롬-탄소 및 크롬-탄소-인 합금도금의 전착과 결정화거동)

  • Kim, Man;Kim, Dae-Young;Park, Sang-Eon;Kwon, Sik-Chul;Choi, Yong
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.80-85
    • /
    • 2004
  • Chromium-carbon (Cr-C) and chromium-carbon-phosphorus (Cr-C-P) alloy deposits using trivalent chromium sulfate baths containing potassium formate were prepared to study their current efficiency, hardness change and phase transformations behavior with heat treatment, respectively. The current efficiencies of Cr-C and Cr-C-P alloy deposits increase with increasing current density in the range of 15-35 A/dm$^2$. Carbon content of Cr-C and phosphorous of Cr-C-P layers decreases with increasing current density, whereas, the carbon content of Cr-C-P layer is almost constant with the current density. Cr-C deposit shows crystallization at $400^{\circ}C$ and has (Cr+Cr$_{ 23}$$C_{6}$) phases at $800^{\circ}C$. Cr-C-P deposit shows crystallization at $600^{\circ}C$ and has (Cr+Cr$_{23}$ $C_{6}$$+Cr_3$P) phases at $800^{\circ}C$. The hardness of Cr-C and Cr-C-P deposits after heating treatment for one hour increase up to Hv 1640 and Hv 1540 and decrease about Hv 820 and Hv 1270 with increasing annealing temperature in the range of $400~^{\circ}C$, respectively. The hardness change with annealing is due to the order of occurring of chromium crystallization, precipitation hardening effect, softening and grain growth with temperature. Less decrease of hardness of Cr-C-P deposit after annealing above $700^{\circ}C$ is related to continuous precipitation of $Cr_{23}$ $C_{6}$ and $Cr_3$P phases which retard grain growth at the temperature.

A Study on the Characteristics of Electro Polishing and Utility Materials for Transit High Purity Gas (청정도 가스 이송용 재료의 특성과 전해연마에 관한 연구)

  • Lee, Jong-Hyung;Park, Shin-Kyu;Yang, Seong-Hyeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • In the manufacture progress of LCD or semiconductor, there are used many kinds of gas like erosion gas, dilution gas, toxic gas as a progress which used these gas there are required high puritize to increase accumulation rate of semiconductor or LCD materials work progress of semiconductor or LCD it demand many things like the material which could minimize metallic dust that could be occured by reaction between gas and transfer pipe laying material, illumination of the surface, emition of the gas, metal liquation, welding etc also demand quality geting stricted. Material-Low-sulfur-contend (0.007-0010), vacuum-arc-remelt(VAR), seamless, high-purity tubing material is recommend for enhance welding lower surface defect density All wetted stainless steel surface must be 316LSS elecrto polishinged with ${\leq}0.254{\mu}m$($10.0{\mu}in$) Ra average surface finish, $Cr/Fe{\geq}1.1$ and $Cr_2O_3$ thickness ${\geq}25{\AA}$ From the AES analytical the oxide layer thickness (23.5~36 angstroms silicon dioxide equivalent) and chromum to iron ratios is similar to those generally found on electropolished stainless steel., molybdenum and silicon contaminants ; elements characteristic of stainless steel (iron, nickel and chromium); and oxygen were found on the surface Phosphorus and nitrogen are common contaminants from the electropolish and passivation steps.

  • PDF