• Title/Summary/Keyword: Chromium oxide

Search Result 117, Processing Time 0.022 seconds

Thermal Aging Embrittlement of High Chromium Oxide Dispersion Strengthened Steels

  • Lee, J.S.;Kim, I.S.;Jang, C.H.;Kimura, A.;Kim, B.G.;Choo, K.N.;Choo, Y.S.;Kang, Y.H.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2005.05a
    • /
    • pp.471-472
    • /
    • 2005
  • After thermal aging treatment at 693 K for 322 hours, any discernable precipitation could not be found in the $13{\sim}22$ Cr ODS steels, but showing an increase in SP-DBTT and reduction in upper shelf energy. The degree of aging embrittlement increases with Cr content such that the increases in SP-DBTT are 10, 50 and 73 K in 13, 16 and 19 Cr ODS steel, respectively. Amount of hardening also increased linearly as a function of Cr content. Based on the TEM observation, the origin of hardening must be related to the invisibly fine size of Cr-rich ${\acute{\alpha}}-phase$ (<1 nm).

  • PDF

Oxidation of STS304 Stainless Steel between 1050 and 1200℃ for 1 Hour in Air (STS 304 스테인리스강의 대기중 1050~1200℃, 1시간 동안의 산화)

  • Nguyen, Thuan Dinh;Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.4
    • /
    • pp.235-241
    • /
    • 2009
  • The STS304 stainless steel was oxidized isothermally and cyclically at temperatures between 1050 and $1200^{\circ}C$ for 1 hr in air. During isothermal oxidation, it displayed good oxidation resistance at $1050^{\circ}C$. However, it suffered from breakaway oxidation above $1100^{\circ}C$, being accompanied with internal oxidation. During cyclic oxidation, it also displayed good oxidation resistance at $1050^{\circ}C$, but it suffered from massive weight loss above $1125^{\circ}C$. The oxide scales formed consisted primarily of $Fe_2O_3$, $Fe_3O_4$ with and without $Cr_2O_3$. They were generally non-adherent.

Organic and inorganic carbon-14 in discharges of JSC Institute of Nuclear Materials

  • E.I. Nazarov;A.A. Ekidin;A.V. Kruzhalov;M.E. Vasyanovich;A.I. Lysikov;P.N. Kalinkin;I.M. Russkikh
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2107-2111
    • /
    • 2023
  • The aim of the study is the activity concentration measurements of organic and inorganic 14C in the discharges of JSC "Institute of Nuclear Materials" (INM). In INM the research water-water reactor "IVV-2M" is operating. Collecting of 14C species was performed using a 14C sampler with a chromium oxide and platinum catalysts at different temperatures: 400, 550 and 700 ℃. The measurements of 14C activity were performed using a liquid scintillation counter. The share of organic 14C in emissions ranged from 0.30 to 0.84 and depends on the temperature of the catalyst, core structure and reactor operating mode.

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

Structural Properties of Ammoniated Thin Cr Films with Oxygen Incorporated During Deposition (산소가 혼입된 Cr 박막의 질화처리에 따른 구조적 특성)

  • Kim, Jun;Byun, Changsob;Kim, Seontai
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.194-200
    • /
    • 2014
  • Metallic Cr film coatings of $1.2{\mu}m$ thickness were prepared by DC magnetron sputter deposition method on c-plane sapphire substrates. The thin Cr films were ammoniated during horizontal furnace thermal annealing for 10-240 min in $NH_3$ gas flow conditions between 400 and $900^{\circ}C$. After annealing, changes in the crystal phase and chemical constituents of the films were characterized using X-ray diffraction (XRD) and energy dispersive X-ray photoelectron spectroscopy (XPS) surface analysis. Nitridation of the metallic Cr films begins at $500^{\circ}C$ and with further increases in annealing temperature not only chromium nitrides ($Cr_2N$ and CrN) but also chromium oxide ($Cr_2O_3$) was detected. The oxygen in the films originated from contamination during the film formation. With further increase of temperature above $800^{\circ}C$, the nitrogen species were sufficiently supplied to the film's surface and transformed to the single-phase of CrN. However, the CrN phase was only available in a very small process window owing to the oxygen contamination during the sputter deposition. From the XPS analysis, the atomic concentration of oxygen in the as-deposited film was about 40 at% and decreased to the value of 15 at% with increase in annealing temperature up to $900^{\circ}C$, while the nitrogen concentration was increased to 42 at%.

Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution (알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가)

  • Kim, Myung-Hwan;Lee, Man-Sig;Kwag, Sam-Tag;Moon, Myung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.3
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

A Study on the Spatiotemporal Characteristics of a Hazard-based Index using the Pollutant Release and Transfer Register Data (화학물질 배출·이동량 자료를 이용한 유해기반 지수의 시공간 특성 연구)

  • Kim, Shijin;Lim, Yu-ra;Bae, Hyun-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.144-154
    • /
    • 2021
  • Objectives: This study was intended to identify hazard contribution by region, media, and chemical by calculating a hazard-based index using pollutant release and transfer register (PRTR) data. Methods: PRTR data for the period 2011 to 2016 was analyzed to examine the regional trends in toxic releases in terms of quantity and to create a corresponding hazard-based index. For the hazard-based index, the Risk-Screening Environmental Indicators (RSEI) Model was used. Results: The results of the trend analysis show that total releases decreased slightly, but health hazard levels increased consistently. According to the outcome of regional contribution analysis of the hazard-based index, Chungcheongnam-do, Jeollabuk-do and Gyeonggi-do Provinces showed a high ratio in the index for air and water release pollutants, while Gyeongsangbuk-do and Gyeongsangnam-do Provinces showed a high ratio in the index of soil release and waste transfer pollutants. Also, as a result of the analysis of the top ranked substances in the hazard-based index, it was found that chromium, cobalt and its compounds, and ethylene oxide contributed greatly to air release substances, while chromium, benzene, and lead and its compounds contributed greatly to water release substances. Conclusion: These results showed considerable disparities between total release and health hazard levels, especially in the analysis of contribution by regions and by chemical substance. Therefore, the hazard-based index should be used both to support a more comprehensive and robust approach to screening of chemicals for environmental health policy and for management.

Tuning for Temperature Coefficient of Resistance Through Continuous Compositional Spread Sputtering Method (연속 조성 확산 증착 방법을 통한 저항 온도 계수의 튜닝)

  • Ji-Hun Park;Jeong-Woo Sun;Woo-Jin Choi;Sang-Joon Jin;Jin-Hwan Kim;Dong-Ho Jeon;Saeng-Soo Yun;Jae-Il Chun;Jin-Ju Lim;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.3
    • /
    • pp.323-327
    • /
    • 2024
  • The low-temperature coefficient of resistance (TCR) is a crucial factor in the development of space-grade resistors for temperature stability. Consequently, extensive research is underway to achieve zero TCR. In this study, resistors were deposited by co-sputtering nickel-chromium-based composite compositions, metals showing positive TCR, with SiO2, introducing negative TCR components. It was observed that achieving zero TCR is feasible by adjusting the proportion of negative TCR components in the deposited thin film resistors within certain compositions. Additionally, the correlation between TCR and deposition conditions, such as sputtering power, Ar pressure, and surface roughness, was investigated. We anticipate that these findings will contribute to the study of resistors with very low TCR, thereby enhancing the reliability of space-level resistors operating under high temperatures.

A STUDY ON THE BOND STRENGH OF 4-META ACRYLIC RESIN DENTURE BASE TO COBALT-CHROMIUM ALLOYS (4-META의치상레진과 Cobalt-Chromium계 합금의 접착강도에 관한 연구)

  • Sung, Moo Gyung;Kim, Kwang Nam;Chang, Ik Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.28 no.2
    • /
    • pp.29-51
    • /
    • 1990
  • This study was designed to compre the tensile bond strength of 4-META containging denture base resin to Co-Cr alloys after various surface treatments. Especially the surface treatment of sandblasting the mental with aluminum oxide and treating in oxidizing solution composed of 3% aqueous sulfuric acid with 1% potassium manganate were compared. Effect of surface roughness on bonding was measured after sandblasting with 50um, 300um aluminun oxide and polishing with emery pater. Also the effects of wax and wax solvent on bonding were observed. According to the type of polymerization process, heat-cured Meta-Dent resin and autopolymerizing Meta-Fast resin were used. For some specimnens, the tensile bond strength were measured agter three pre-conditions : 1day after bonding, immersed in water at $75^{\circ}C{\pm}3^{\circ}C$ for 4weeks, under normal ambient condition for 4weeks. The following results were obtained from this study : 1. The bond strengths of resins containing 4-META were significantly higher than those of conventional denture base resins(p<0.05). 2. Autopolymerizing Meta-Fast resin had higher bond strength than heat-cured Meta-Dent, resin(p<0.05). 3. The bond strengths of Biosil and Nobilium to 4-META containging resins were not significally different(p>0.05). 4. Stable adhesion can be achieved when mechanically roughen the metal surface by snadblasting with $50{\mu}m$ aluminum oxide than treating in an oxidizing soluing with potassium manganate(p<0.05). 5. Once the metal surface is contaminated with wax, the bond srtength decreased greatly in spite of wax wash with boiling water. But the bond strength recovered significantly with the use of wax solvent 6. Meta-Dent resin had higher bond strength when roughen the metal surface with $50{\mu}m$ aluminum oxide than with $300{\mu}m$ aluminum oxide(p<0.05). In case of Meta-Fast, resin, the use of $300{\mu}m$aluminum oxide was a little advantageous of bonding, but was statistically insignificant(p>0.05).

  • PDF

Catalytic Oxidation of Vinyl Chloride on Chromium Oxide Catalysts (크롬 산화물 촉매를 이용한 Vinyl Chloride의 산화 분해반응)

  • Lee, Hae-Wan;Kim, Young Chai;Moon, Sei-Ki
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.58-66
    • /
    • 1999
  • The catalytic oxidation of vinyl chloride was investigated over $CrO_x$ impregnated on $Al_2O_3$ at temperature between 200 and $400^{\circ}C$. The major carbonaceous products were CO and $CO_2$, and the selectivity of $CO_2$ was gradually increased with increasing reaction temperature, while that of CO was dropped consequently. This suggests that CO is the first product which is further oxidized to $CO_2$ in the oxidation of vinyl chloride over $CrO_x/Al_2O_3$. The addition of HCl in the feed didn't affect the conversion of vinyl chloride, but the selectivity of $CO_2$ decreased by adding HCl. It implies that HCl inhibits, the complete oxidation of vinyl chloride to $CO_2$. When oxidizing vinyl chloride in dry air, significant amounts of $Cl_2$ were observed, while no $Cl_2$ was detected in the humid condition. The activities of several catalysts including various precious metals and other transition metal oxides were measured, it was found that the catalytic activity of 12% $CrO_x/Al_2O_3$ was higher than other catalysts except 1% $Pt/Al_2O_3$. The reaction rate of 12% $CrO_x/Al_2O_3$ was 1.2 times lower than that of 1% Pt/alumina, but it was 3 to 8 times more active than other catalysts for vinyl chloride oxidation at $275^{\circ}C$.

  • PDF