• Title/Summary/Keyword: Chromate removal

Search Result 17, Processing Time 0.028 seconds

Chromate Removal from Wastewater using Micellar Enhanced Ultrafiltration and Activated Carbon Fibre Processes; Validation of Experiment with Mathematical Equations

  • Bade, Rabindra;Lee, Seung-Hwan
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.98-104
    • /
    • 2008
  • In this study, chromate and cetylperidinium chloride (CPC) removal from artificial wastewater was monitored by using micellar enhanced ultrafiltration (MEUF) and activated carbon fibre (ACF) adsorption hybrid processes. For the efficient chromate removal, molar concentration of the CPC should be five times that of chromate and it should be at least one critical micelle concentration (CMC). The MEUF was found to be effective in the chromate removal while ACF in the CPC adsorption to produce chromate and CPC free effluents. The chromate and CPC removal was 99.8% from MEUF-ACF process. Effluent chromate concentration was exponentially correlated with molar ratio of CPC to chromate and pH.

Simultaneous removal of dissolved TCE and chromate using micellar-enhanced ultrafiltration

  • 이율리아;김호정;백기태;김보경;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.413-416
    • /
    • 2003
  • Micellar enhanced ultrafiltration(MEUF) is a surfactant-based separtaion technique which can remove dissolved organics or multivalent ions from water. In this study, trichloroethylene(TCE) and chromate were simultaneouly removed using MEUF and cetyltrimethylammoniun chloride (CPC) was used as a surfactant. The removal efficiency of chromate was 99% and that of TCE was more than 80%. The presence of TCE or chromate did not affect removal efficiency of each pollutants because the predominat mechanism of TCE and chromate are different.

  • PDF

복합오염물질제거를 위한 현장반응층 이용에 관한 연구

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.168-171
    • /
    • 2003
  • This research was conducted to assess the performance of the mixed reactive materials with sand, iron filings, and HDTMA-bentonite for trichloroethylene (TCE) and chromate removal under controlled groundwater flow conditions. TCE and chromate removal rates with the mixtures of iron filing/HDTMA-bentonite were highest among four columns due to reduction by iron filings and sorption by HDTMA-bentonite. The greater capacity of the mixed iron filing/HDTMA-bentonite compared HDTMA-bentonite was due to an enhanced chromate reduction in addition to chromate sorption. The presence of chromate caused greater inhibition of TCE removal in the column with iron filings, while the presence of TCE caused less inhibition of TCE. Also, nitrate caused the decrease in TCE removal relative to chloride. Nitrate ions may also significantly affect TCE reduction rates by competing for electrons with the chlorinated compounds. The anion and co-existed contaminants competing effects should be considered when designed permeable reactive barriers (PRBs) composed of zero valent iron for field applications to remediate TCE and chromate.

  • PDF

Remediation Groundwater contaminated with chromate using Micellar - enhanced ultrafiltration(MEUF)

  • 양지원;백기태;김보경
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.306-309
    • /
    • 2002
  • Micellar-enhanced ultrafiltration was investigated to remediate groundwater contaminated with chromate using a cationic surfactant, cetylpyridinium chloride (CPC). Removal of chromate was expressed as a function of molar ratio of CPC to chromate. With 10 molar ratio of CPC, removal efficiency of chromate was reached to over 99%. The rejection of CPC was 90% at 1 molar ratio, gradually increased as the molar ratio increased.

  • PDF

Removal of Chromate by White Rot Fungus, Inonotus cuticularis

  • LEE, DONG-HEUB;YONG-WON MIN;HAE-IK RHEE;JAE E. YANG;GIE-TAEK CHUN;YEON-HO JEONG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.2
    • /
    • pp.292-295
    • /
    • 2002
  • A chromate-resistant white rot fungus, Inonotus cuticularis, abundant in oak trees, was isolated for chromate removal and detoxification of chromate. Inonotus cuticularis was also investigated for an optimal waste treatment system. The screened cells were able to reduce an initial chromate concentration of as high as 1,300 ppm. Cell growth kinetics showed that the optimum culture conditions in flasks were at $33^{\circ}C$ and pH 4.2. Furthermore, the cells were able to remove $54\%$ of the initial chromate by a two-stage operation based on the combination of a fermentor and airlift reactor.

Chromate Conversion Coating on 3D Printed Aluminum Alloys (3D 프린팅으로 제조한 알루미늄 합금의 크로메이트 코팅)

  • Shin, Hong-Shik;Kim, Hyo-Tae;Kim, Ki-Seung;Choi, Hye-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.2
    • /
    • pp.109-115
    • /
    • 2022
  • The demand for metal 3D printing technology is increasing in various industries. The materials commonly used for metal 3D printing include aluminum alloys, titanium alloys, and stainless steel. In particular, for applications in the aviation and defense industry, aluminum alloy 3D printing parts are being produced. To improve the corrosion resistance in the 3D printed aluminum alloy outputs, a post-treatment process, such as chromate coating, should be applied. However, powdered materials, such as AlSi7Mg and AlSi10Mg, used for 3D printing, have a high silicon content; therefore, a suitable pretreatment is required for chromate coating. In the desmut step of the pretreatment process, the chromate coating can be formed only when a smut composed of silicon compounds or oxides is effectively removed. In this study, suitable desmut solutions for 3D printed AlSi7Mg and AlSi10Mg materials with high silicon contents were presented, and the chromate coating properties were studied accordingly. The smut removal effect was confirmed using an aqueous desmut solution composed of sulfuric, nitric, and hydrofluoric acids. Thus, a chromate coating was successfully formed. The surfaces of the aluminum alloys after desmut and chromate coating were analyzed using SEM and EDS.

철과 양수성 물질을 이용한 PCE와 크롬 제거에 관한 연구

  • 조현희;천병식;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.68-71
    • /
    • 2004
  • Effects of surfactants and natural organic matter (NOM) on the sorption and reduction of tetrachloroethylene (PCE) and chromate with iron were examined in this study. PCE and chromate reduction by iron depended on the ionic type of the surfactants in this study. The apparent reaction rate constants of PCE with Triton X-100 and hexadecyltrimethyl ammonium (HDTMA) at one half and two times of the critical micelle concentration (CMC) were relatively higher than without surfactants because of the enhanced PCE partitioning and surface concentration. In the presence of sodium dodecyl benzene sulfonate (SDDBS) at 2000 mg/L and NOM at 50 mg/L, the apparent reaction rate constants of PCE increased, but TCE production decreased. The enhanced removal rate of PCE was not due to the dechlorination, and the sorption was dominant iron with SDDBS and NOM. The apparent reaction rate constants of chromate by iron with Triton X-100 and NOM were 1.4-3.1 times lower than without surfactants while that with HDTMA was two times higher than without HDTMA, When the sorbed HDTMA molecules form admicelles, negatively-charged chromate has an affinity for the positively-charged HDTMA head group.

  • PDF

Removal of TCE using zero valent iron (ZVI) with other contaminants

  • 조현희;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.58-61
    • /
    • 2002
  • An alternative to pump and treat groundwater remediation is the use of reactive barriers. Zero valent iron (ZVI) is particularly useful as a reductant of chlorinated hydrocarbons because of its low cost and lack of toxicity ZVI can drive the dechlorination of chlorinated organic compounds and the reduction of chromium from the Cr(Ⅵ) to the Cr(III) state. The contaminants in subsurface environment usually exist as the mixed compounds. Therefore, the objective of this research is to study the effect of the other compounds on TCE removal by ZVI. The removal mechanism of TCE by ZVI is separated the dechlorination and sorption. TCE removal by ZVI slightly increased in presence of naphthalene as the non-reduced compound. TCE removal by ZVI remarkable decreased in presence of carbon tetrachloride, nitrate, and chromate as the reduced compounds. This research suggests that the effect of the coexisted compounds on the removal chlorinated compounds by reactive barrier technology should be considered for practical application.

  • PDF

Kinetics and mechanism of chromate reduction by biotite and pyrite (흑운모 및 황철석에 의한 6가 크롬의 환원 반응속도와 반응기작)

  • 전철민;김재곤;문희수
    • Economic and Environmental Geology
    • /
    • v.36 no.1
    • /
    • pp.39-48
    • /
    • 2003
  • The removal of chromate from aqueous solution using finely ground pyrite and biotite was investigated by batch experiments and the kinetics and the mechanism of chromate reduction were discussed. The chromate reduction by pyrite was about hundred times faster than that by biotite and was also faster at pH 3 than at pH 4. When pyrite was used, more than 90% of initial chromate was reduced within four hours at pH 4 and within 40 min. at pH 3. However, more than 400 hours was taken for the reduction of 90% of initial chromate by biotite. The results indicate that the rate of chromate reduction was strongly depending on the amount of Fe(II) in the minerals and on the dissolution rate of Fe(II) from the minerals. The reduction of chromate at pH 4 resulted in the precipitation of (Cr, Fe)(OH))$_3$$_{ (s)}$, which is believed to have limited the concentrations of dissolved Cr(III) and Fe(III) to less than expected values. When biotite was used, amounts of decreased Fe(II) and reduced Cr(Ⅵ) did not show stoichiometric relationship, which implying there was not only chromate reduction by ferrous ions in the acidic solution but also heterogeneous reduction of ferric ions by the structural ferrous iron in biotite. However, the results from a series of the experiments using Pyrite showed that concentrations of the decreased Fe(II) and the reduced Cr(Ⅵ) were close to the stoichiometric ratio of 3:1. It was because the oxidation of pyrite rapidly created ferrous ions even in oxygenated solutions and the chromate reduction by the ferrous ions was significantly faster than ferrous ion oxygenation.