• Title/Summary/Keyword: Chondrocyte differentiation

Search Result 29, Processing Time 0.023 seconds

Lysophosphatidic Acid Inhibits Nitric Oxide-induced Apoptosis via p70S6kinase Pathway in Rabbit Articular Chondrocytes

  • Yu, Seon-Mi;Kim, Song-Ja
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.349-353
    • /
    • 2009
  • Lysophosphatidic Acid (LPA) is a bioactive lysophospholipid that is a potent signaling molecule able to provoke a variety of cellular responses in many cell types such as differentiation, inflammation and apoptosis. In this study, we have investigated the effect of LPA on Nitric oxide (NO)-induced apoptosis in rabbit articular chondrocytes. LPA dramatically reduced NO induced apoptosis of chondrocytes determined by phase contrast microscope and MTT assay. When chondrocytes alone treated with LPA, LPA induced phosphorylation of p70S6kinase, a serine/threonine kinase that acts downstream of phosphatidylinositol 3,4,5-trisphosphate (PIP3) and phosphoinositide-dependent kinase-1 (PDK-1) in the PI3 kinase pathway, dose-dependently detected by Western blot analysis. Phosphorylation of p70S6k with LPA was reduced expression of p53 in NO-induced apoptosis of chondrocytes. Also, inhibition of p70S6kinase with rapamycin was enhanced expression of p53 in chondrocytes. Our findings collectively suggest that LPA regulates NO induced apoptosis through p70S6kinase pathway in rabbit articular chondrocytes.

  • PDF

Anti-inflammatory Effect of Conditioned Medium From an Immortalized Adipose-derived Stem Cell Line by SV40 T Antigen (SV40의 T항원으로 불사화한 지방줄기세포주로부터 생산한 배양액의 항염증 효능)

  • Ye Jin Lee;So Yeong Lee;Min Gyeong Jeong;Seong Moon Park;Dong Wan Kim
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.170-178
    • /
    • 2024
  • Adipose-derived stem cells (ADSCs) are capable of differentiation into multiple lineages of cells, which has attracted attention for clinical therapy. However, ADSCs have poor proliferation capacity and a short life span in culture, which is an impediment in the application to clinical use. Previously, to overcome growth disadvantages, we had established an immortalized ADSC line (ADSC-T) by introducing the SV40 T antigen coding gene into primary human ADSC. In the present study, we evaluated the differentiation potential of this cell line and assessed the anti-inflammatory effect of its conditioned medium (CM). ADSC-T appeared to maintain the differentiation potential into adipocyte and chondrocyte. The CM of ADSC-T suppressed the NF-κB activity and its target gene expression of COX-2 and iNOS. Furthermore, the phosphorylations of MAPKs, including ERK, JNK and p38, were suppressed by the ADSC-T CM. The expressions of pro-inflammatory cytokines such as TGF-β, TNF-α, IL-6, and IL-13 were also suppressed by the CM of ADSC-T. In the Nc/Nga atopic model mice, the CM showed therapeutic effect on DNCB-induced atopic dermatitis. These results indicate that the immortalized ADSC-T maintains the beneficial properties of primary ADSC and could be a versatile cell source for not only research into ADSC but also for production of CM suitable for clinical application.

A study of growth factors, chondrogenic differentiation of mesenchymal stem cells and cell response by needle size differences in vitro (인간간엽줄기세포의 연골세포 분화 유도 성장인자 및 주사침 크기 차이에 따른 세포반응에 대한 in vitro 연구)

  • Jeongyun Park;Yu Jeong Hwang;Joseph Junesirk Choi;Jin Young Chon;Suk Won Lee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.1
    • /
    • pp.13-23
    • /
    • 2024
  • Purpose: This aim of this study was to demonstrate growth factors that differentiate human mesenchymal stem cells into chondrocytes and to evaluate cell proliferation enhancement by needle size differences. Materials and Methods: Human mesenchymal stem cells were cultured in chondrogenic medium supplemented with BMP-2, BMP-4, BMP-6, BMP-7, BMP-13, FGF-2, FGF-18, IGF-1, TGF-β1, TGF-β2, TGF-β3 and without growth factors for 14, 21, and 28 days. Then, the expression levels of SOX-5, SOX-6, SOX-9 and FOXO1A were comparatively analyzed. Human mesenchymal stem cells were inoculated into culture dishes using 18, 21, and 26 gauge (G) needles, and cell proliferation was measured after 24, 48, and 72 hours, respectively. Results: In addition to the previously known FGF, IGF-1, and TGFβ1,the BMP family growth factors such as BMP-2, BMP-4, BMP-6, and BMP-7 increased the expression of chondrocyte differentiation genes SOX-5, SOX-6, SOX-9, and FOXO1A. At 48 hours, the 26G group, the smallest needle, showed significant cell proliferation improvement compared to the control group and the 18G group. At 72 hours, the 26G group, the smallest needle, showed significant increase in cell proliferation compared to the control group. Conclusion: Through this study, growth factors with the ability to induce chondrocyte differentiation of human mesenchymal stem cells were investigated, and cell proliferation changes by needle size differences were determined.

Decreased Contact Inhibition in Mouse Adipose Mesenchymal Stem Cells

  • Jeon, Yunmi;Lee, Myung Sook;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.4
    • /
    • pp.329-338
    • /
    • 2012
  • The proliferation of embryonic cells or adult stem cells in tissue is critically regulated during development and repair. How limited the proliferation of cells, so far, is not much explored. Cell-cell contact proliferation inhibition is known as a crucial mechanism regulating cell proliferation in vitro and in vivo. In this study we examined the characters of mouse subcutaneous adipose derived stem cells (msADSC) whether they lost or get contact inhibition during in vitro culture. The characters of msADSC growth after confluence were analyzed using confocal microscope and the expression profiles of contact inhibition related genes were analyzed according to the morphological changes using real-time PCR method. msADSC showed overlapping growth between them but not after passage 14. The cell shapes were also changed after passage 14. The expression profiles of genes which are involved in contact inhibition were modified in the msADSC after passage 14. The differentiation ability of msADSCs to adipocyte, chondrocyte and osteocyte was not changed by such changes of gene expression profiles. Based on these results, it is revealed that smADSC were characterized by getting of strong cell-cell contact inhibition after passage 14 but the proliferation and developmental ability were not blocked by the change of cell-cell contact proliferation inhibition. These finding will help to understand the growth of adipose tissue, although further studies are needed to evaluate the physiological meaning of the cell-cell contact proliferation inhibition during in vitro culture of msADSC.

Morphological evaluation during in vitro chondrogenesis of dental pulp stromal cells (영구치 치수 기질세포를 이용한 연골 분화 및 분화 시기에 따른 형태학적 변화)

  • Chung, Choo-Ryung;Kim, Ha-Na;Park, Yeul;Kim, Min-Jeong;Oh, Young-Ju;Shin, Su-Jung;Choi, Yoon-Jeong;Kim, Kyung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.34-40
    • /
    • 2012
  • Objectives: The aim was to confirm the stem cell-like properties of the dental pulp stromal cells and to evaluate the morphologic changes during in vitro chondrogenesis. Materials and Methods: Stromal cells were outgrown from the dental pulp tissue of the premolars. Surface markers were investigated and cell proliferation rate was compared to other mesenchymal stem cells. Multipotency of the pulp cells was confirmed by inducing osteogenesis, adipogenesis and chondrogenesis. The morphologic changes in the chondrogenic pellet during the 21 day of induction were evaluated under light microscope and transmission electron microscope. TUNEL assay was used to evaluate apoptosis within the chondrogenic pellets. Results: Pulp cells were CD90, 105 positive and CD31, 34 negative. They showed similar proliferation rate to other stem cells. Pulp cells differentiated to osteogenic, adipogenic and chondrogenic tissues. During chondrogenesis, 3-dimensional pellet was created with multi-layers, hypertrophic chondrocyte-like cells and cartilage-like extracellular matrix. However, cell morphology became irregular and apoptotic cells were increased after 7 day of chondrogenic induction. Conclusions: Pulp cells indicated mesenchymal stem cell-like characteristics. During the in vitro chondrogenesis, cellular activity was superior during the earlier phase (within 7 day) of differentiation.

Effects of Deer Antler Water Extract(Pilose Antler of Cervus Korean TEMMINCK Var. Mantchuricus Sinhoe) on Chondrocytes

  • Kim, Moo-Jin;Lee, Seung-Deok;Kim, Kyung-Ho;Byun, Hyuk;Kim, Kap-Sung
    • Journal of Acupuncture Research
    • /
    • v.23 no.2
    • /
    • pp.103-111
    • /
    • 2006
  • Objectives : Deer antler Water Extract(DAE), prepared from the pilose antler of Cervus korean TEMMINCK var. mantchuricus Swinhoe (Nokyong), a traditional immuno-suppressive and immuno-activating Korean herbal-acupuncture, is thought to play an important role in human bone remodeling. Methods : To determine whether DAE can induce the differentiation of resting zone chondrocytes(RC) or not, confluent cell cultures were pretreated for 24, 36, 48, 72, and 120hrs with DAE. At the end of pretreatment, the media were replaced with new media containing $10^{-10}{\sim}10^{-8}M\;1,25-(OH)_2D_3$ and the cells incubated for an additional 24hrs. Results : This second treatment was chosen because prior studies had shown that only the more mature growth zone chondrocytes(GC) respond to this vitamin $D_3$ metabolite. The effect of DAE pretreatment on cell maturation was confirmed by measuring alkaline phosphatase (ALPase)-specific activity. Changes in matrix protein synthesis were examined by measuring collagen synthesis, as well as $^{35}SO_4$ incorporation into proteoglycans. When RC cells were pretreated for 120h with DAE, treatment with $1,25-(OH)_2D_3$ caused a dose-dependent increase in ALPase-specific activity and collagen synthesis, however, the proteoglycan production was not affected. RC cells pretreated with $1,25-(OH)_2D_3$ responded like RC cells that had not received any pretreatment. Conclusion : These results indicate that DAE directly regulates the maturation of RC chondrocytes into GC chondrocytes. Therefore it was indicated that DAE may play a significant role in regulating chondrocyte maturation during endochondral ossification.

  • PDF

Differentiation potential of canine mesenchymal stem cells on hydrogel scaffold-based three-dimensional environment (하이드로젤 지지체 기반 3차원 환경에서 개 간엽줄기세포의 분화능 분석)

  • Gu, Na-Yeon;Park, Mi Jeong;Lee, Jienny;Byeon, Jeong Su;Jeong, Da-Un;Cho, In-Soo;Cha, Sang-Ho
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.4
    • /
    • pp.211-217
    • /
    • 2018
  • Mesenchymal stem cells (MSCs) are useful candidates for tissue engineering and cell therapy. Physiological cell environment not only connects cells to each other, but also connects cells to the extracellular matrix that provide mechanical support, thus exposing the entire cell surface and activating signaling pathways. Hydrogel is a polymeric material that swells in water and maintains a distinct 3-dimensional (3D) network structure by cross linking. In this study, we investigated the optimized cellular function for canine adipose tissue-derived MSCs (cAD-MSCs) using hydrogel. We observed that the expression levels of Ki67 and proliferating cell nuclear antigen, which are involved in cell proliferation and stemness, were increased in transwell-hydrogel (3D-TN) compared to the transwell-normal (TN). Also, transforming growth factor-${\beta}1$ and SOX9, which are typical bone morphogenesis-inducing factors, were increased in 3D-TN compared to the TN. Collagen type II alpha 1, which is a chondrocyte-specific marker, was increased in 3D-TN compared to the TN. Osteocalcin, which is a osteocyte-specific marker, was increased in 3D-TN compared to the TN. Collectively, preconditioning cAD-MSCs via 3D culture systems can enhance inherent secretory properties that may improve the potency and efficacy of MSCs-based therapies for bone regeneration process.

Characterization of Human Thigh Adipose-derived Stem Cells (사람의 허벅지지방유래 줄기세포의 특성 분석)

  • Heo, Jin-Yeong;Yoon, Jin-Ah;Kang, Hyun-Mi;Park, Se-Ah;Kim, Hae-Kwon
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.233-241
    • /
    • 2010
  • Human adipose stem cells are an abundant, readily available population of multipotent progenitor cells that reside in adipose tissue and these cells have characteristics very similar to bone marrow mesenchymal stromal cells (BMMSCs). However, liposuction procedure, donor age, body mass index, and harvesting sites might generate differences in the initial cell population and the preparations are a heterogeneous mixture of precursors with different subsets. Therefore, in this study, we investigated the characteristics of human thigh adipose stem cells and the differentiation potential into mesodermal and endodermal lineage. Thigh adipose stem cells maintained fibroblast-like morphology similar to BM-MSCs and they underwent average 56.5 doublings and produced $5{\times}10^{22}$ cells. These cells expressed SCF, Oct4, nanog, vimentin, CK18, FGF5, NCAM, Pax6, BMP4, HNF4a, nestin, GATA4, HLA-ABC, and HLA-DR genes at p3 and they also expressed Oct4, Thy-1, FSP, vWF, vimentin, desmin, CK18, CD54, CD4, CD106, CD31, a-SMA, HLA-ABC proteins. Moreover, they could differentiate into mesodermal lineage cells such as adipocyte, osteoblast and chondrocyte. In addition, they also differentiated into insulin secreting cells in our culture condition. In conclusion, human thigh adipose stem cells retain proliferative potential and expression patterns similar to BM-MSCs and they also differentiate into various cell types. Thus, human thigh adipose stem cells might be useful alternative cell source for clinical application.

Bone marrow stem cells incubated with ellipticine regenerate articular cartilage by attenuating inflammation and cartilage degradation in rabbit model

  • Mohammad Amjad Hossain;Soyeon Lim;Kiran D. Bhilare;Md Jahangir Alam;Baicheng Chen;Ajay Vijayakumar;Hakyoung Yoon;Chang Won Kang;Jong-Hoon Kim
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.83.1-83.12
    • /
    • 2023
  • Background: Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. Objectives: This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. Methods: A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. Results: The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. Conclusions: The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.