• Title/Summary/Keyword: Chlorsulfuron

Search Result 8, Processing Time 0.024 seconds

Chlorsulfuron-induced Phytotoxicity in Canola(Brassica napus L.) Seedlings (캐놀라 식물체내에서 클로르설푸론의 약해 유발 요인)

  • Kim, Song-Mun;Hur, Jang-Hyun;Han, Dae-Sung;Vanden Born, William H.
    • Korean Journal of Weed Science
    • /
    • v.17 no.2
    • /
    • pp.199-206
    • /
    • 1997
  • Chlorsulfuron, an acetolactate-synthase-inhibiting sulfonylurea herbicide, induces many metabolic and physiological changes in susceptible plants. The objective of this study was to determine to what extent chlorsulfuton-induced phytotoxicity was due to a shortage of final products(the branched-chain amino acids valine, leucine, and isoleucine) or to an accumulation of a toxic metabolite(2-ketobutyrate), or both, in a susceptible species. Chlorsulfuron-treated canola seedlings showed growth inhibition and injury symptoms that included chlorosis, downward leaf rolling, and accumulation of anthocyanins. Supplementation with valine, leucine, and isoleucine prevented the chlorsulfuron-induced growth inhibition and injury symptoms only partially, suggesting that factor(s) other than a shortage of the branched-chain amino acids also are involved in the phytotoxicity. Canola seedlings treated with 2-ketobutyrate showed reduced growth, but they showed different changes in metabolites than seedlings treated with chlorsulfuron. The results suggest that 2-ketobutyrate is not involved in chlorsulfuron-induced phytotoxicity. We conclude that chlorsulfuron-induced phytotoxicity is due at least in part to a shortage of branched-chain amino acids.

  • PDF

Metabolismus von 14C-Chlorsulfuron in Verschieden Empfindlichen Kulturpflanzen und Unkrautern (감수성(感受性)이 다른 작물(作物)과 잡초(雜草)에 있어서 Chlorsulfuron 의 대사작용(代謝作用))

  • Kang, Byeung-Hoa
    • Korean Journal of Weed Science
    • /
    • v.4 no.2
    • /
    • pp.115-124
    • /
    • 1984
  • Chlorsulfuron (chemical name : 2-Chloro-N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-aminocarbonyl-benzenesulfonamide) is a herbicidally active ingredient which shows effect against susceptible weeds already at such low rates like 5-20g active ingredient per hectare. In the here reported trials metabolism in several sensitive cultivated plants and weeds have been analysed using ^{14}C-labelled active ingredient. The uptake of chlorsulfuron by leaves or the root system is good in all plants species, and translocation takes place either symplasmatically or apoplasmatically. Metabolism takes place in all investigated plant species by development of hydrophile suhstances in roots and shoots. Decomposition of chlorsulfuron in roots and shoots of tolerant species (Triticum aestivum and Hordeum vulgare) to polare substances takes place quantitatively faster and quicker than in susceptible species (Beta vulgaris and Matricaria chamomilla).

  • PDF

Herbicidal action mechanism of chlorsulfuron (Acetolactate synthase 저해 제초제인 chlorsulfuron의 작용기작)

  • Kim, Song-Mun;Kim, Yong-Ho;Hur, Jang-Hyun;Han, Dae-Sung
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.1-20
    • /
    • 1998
  • Chlorsulfuron, one of sulfonylurea herbicides acts through inhibition of acetolactate syuthase (EC 4.1.3.18; ALS, also known as acetohydroxyacid synthase) in the branched-chain amino acid biosynthesis process. After chlorsulfuron-ALS interaction, many physiological and metabolic disruptions occur in plants. However, it is not clear how this chlorsulfuron-ALS interaction affects those physiological and metabolic processes and how this interaction leads subsequently to plant death. Several researchers suggested that the death of chlorsulfuron-treated plants might be due to a shortage of the branched-chain amino acids, an accumulation of toxic metabolites, and/or a depletion of photoassimilates. It remains as a mystery presently, however, if such changes result in the plant death. In this review, we discussed how the chlorsulfuran-ALS interaction leads to physiological and metabolic disruptions in plants.

  • PDF

In vitro Acetolactate Synthase Inhibition of LGC-40863 in Rice and Barnyardgrass (시규제초제 LGC-40863의 벼와 피에 대한 Acetolactate synthase 저해 활성)

  • Bae, Y.T.;Lee, J.H.;Koo, S.J.
    • Korean Journal of Weed Science
    • /
    • v.17 no.1
    • /
    • pp.66-70
    • /
    • 1997
  • LGC-40863(proposed common name ; pyribenzoxim), (benzophenone O-[2,6-bis[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzoyl]oxime) is a new rice herbicide being developed by LG Chemical Ltd. The herbicide is highly selective between rice(Oryza sativa L.) and weeds including barnyardgrass (Echinochloa crus-galli(L.) P. Beauv.), and assumed to inhibit acetolactate synthase(ALS ; EC 4.1.3.18) because other structurally related herbicides inhibit the enzyme. To know inhibitory activity and the mode of inhibition of LGC-40863, $I_{50}$(concentration inhibiting ALS activity by 50%) and inhibition kinetics were investigated using ALS extracted from rice and barnyardgrass. $I_{50}$ values of LGC-40863 were 14 and 16mM in rice and barnyardgrass, respectively. In contrast to imazapyr(2-[4,5-dihydro-4-mythyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-3-pyridine-carboxylic acid) which showed an uncompetitive inhibition pattern, LGC-40863 was a noncompetitive inhibitor to ALS with respect to pyruvate similar to chlorsulfuron(2-chloro-N-((4-methoxy-6-methyl-l,3,5-triazin-2-yl) aminocarbonyl)benz-enesulfonamide) in both plants.

  • PDF

Physiological Responses of Corn Plants to Chlorsulfuron and Imazaquin (Chlorsulfuron 과 Imazaquin에 대한 옥수수의 생리적 반응)

  • Kim, K.J.;Hwang, I.T.;Choi, J.S.;Cho, K.Y.;Pyon, J.Y.
    • Korean Journal of Weed Science
    • /
    • v.16 no.1
    • /
    • pp.64-71
    • /
    • 1996
  • This study was conducted to determine the physiological responses of corn plants to chlorsulfuron, CHL, (2-chloro-N-(((4-methoxy-6-methyl-1,3,5- triazin-2-yl)amino)carboxyl) benzenesulfonamide) and/or imazaquin, IMA, (2-(4,5-dihydro-4-methyl-4-(1-methyl)-5-oxo-1H-imidazol-2y1)-3-quinoline carboxylic acid). CHL inhibited the plant growth within 6h after treatment, whereas IMA inhibited the growth more slowly(i.e., 36h). CHL inhibited the cell division of the root tips rapidly, however, little effect was found with IMA treatment. Neither CHL nor IMA had effect on the cell elongation of the shoots. CHL inhibited acetolactate synthase(ALS) activity of the roots within 1h after treatment. Interaction between CHL and IMA in growth inhibition was found to be additive or synergistic with simultaneous or sequential treatment of the two herbicides, respectively. In addition, interaction between CHL and IMA in ALS inhibition was found to be additive when the two herbicides were treated simultaneously.

  • PDF

Inhibition Characteristics of Chlorsulfuron and Imazaquin on Acetolactate Synthase Activity of Corn Plants (Chlorsulfuron 및 Imazaquin에 의한 옥수수 Acetolactate Synthase 활성의 저해특성)

  • Hwang, I.T.;Kim, K.J.;Lee, H.J.;Cho, K.Y.;Chun, J.C.
    • Korean Journal of Weed Science
    • /
    • v.16 no.2
    • /
    • pp.122-131
    • /
    • 1996
  • The inhibition characteristics of chlorsulfuron [CHL, 2-chloro-N-[{ (4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino}carbonyl]benzenesulfonamide] and imazaquin [IMA, 2-{4,5-dihydro-4-methyl-4-(1-methy-lethyl)-5-oxo-1H-imidazol-2-yl}-3-quinolinecarboxylic acid] on acetolactate synthase(ALS) activity of corn plants were investigated. CHL and IMA rapidly inhibited ALS activity of corn plants in vitro. Their $I_{50}$ values for ALS activity were 100nM and $5{\mu}M$, respectively, indicating that CHL had 50 times more inhibitory effect on ALS activity than IMA. The first applied herbicide had a dominant inhibitory effect on ALS activity when the two herbicides were applied sequentially. Branched-chain amino acids, valine(Val), leucine(Leu), and isoleucine(Ile) showed a feedback inhibition on ALS activity ; Val or Leu had a more inhibitory effect on ALS activity than Ile. Branchedchain amino acids and CHL or IMA exhibited an additive effect on inhibiting ALS activity. This suggests that branched-chain amino acids inhibit ALS activity by a different mechanisms) from that of CHL or IMA. Apparent ALS activity, which was measured on the basis of the conversion of pyruvate to acetolactate, was decreased by the addition of 2-ketobutyrate into the ALS reaction mixture in a concentration-dependent manner. In addition, kinetic studies revealed that CHL acts as a noncompetitive inhibitor, while IMA acts as an uncompetitive inhibitor to ALS with respect to pyruvate.

  • PDF

Acetolactate Synthase Activity Inhibition and Herbicidal Activity of Sulfonylurea and Imidazolinone Herbicides (Sulfonylurea 및 imidazolinone계 제초제(除草劑)의 살초작용(殺草作用)과 acetolactate synthase 활성(活性) 억제작용(抑制作用))

  • Hwang, I.T.;Hong, K.S.;Cho, K.Y.
    • Korean Journal of Weed Science
    • /
    • v.15 no.1
    • /
    • pp.54-62
    • /
    • 1995
  • Acetolactate synthase activity inhibition and herbicidal activities were investigated with 2 sulfonylureas [chlorsulfuron{2-chloro-N-{{(4-methoxy-6-methyl-1,3,5-triazin-2-yl) amino} carboxyl} benzenesulfonamide}, metsulfuron-methyl{methyl-2{{{{(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino}carbonyl}amino}sulfonyl}benzoic acid}, and 2 imidazoli-nones [imazethapyr{2-{4,5-dihydro-4-methyl-4-(1-methyl)-5-oxo-1H-imidazol-2-yl}-5-ethyl-3-pyridinecarboxylicacid}, imazaquin{2-{4,5-dihydro-4-methyl-4-(1-methyl)-5-oxo-1H-imidazol-2-yl}-3-quinoline carboxylic acid} herbicides. A broad weeding spectrum was observed with the treated herbicides at low application rates. Both corn(Zea mays L.) and sorghum(Sorghum bicolor Moench) were very sensitive to the two herbicide groups. Although legumes, such as soybean(Glycine max Merr.), clover(Trifolium repense L.), and indian jointvetch(Aeschnomene indica L.) were sensitive to the sulfonylureas, they were tolerant to the imidazolinones. On the contrary, wheat(Triticum aestivum L.) and barley(Hoderum sativum Jess.) showed the reverse responses of the legumes to the two herbicide groups. Quackgrass(Agropyron repens(L.) P. Beauv.). however, was commonly tolerant to the two herbicide groups. Degrees of crop injury and acetolactate synthase inhibition also varied with the crops examined. The 50% inhibition concentrations of sulfonylureas on acetolactate synthase in vitro activity($IC_{50}$) from corn, wheat, and soybean did not relate to the greenhouse herbicidal activities ($GI_{50}$). With chlorsulfuron, for example, wheat had more than 100 times higher $GI_{50}$ than corn and soybean, but the $IC_{50}$ was 4 to 10 times lower. Similar observation was made with metsulfuron-methyl. However, closer relationships between $IC_{50}$ and $GI_{50}$ were found with the imidazolinones. When imazethapyr was applied, the order of $GI_{50}$ values against com, wheat, and soybean was the same as that of $IC_{50}$.

  • PDF

Crop Injury (Growth Inhibition) Induced by Herbicides and Remedy to Reduce It (제초제(除草劑) 약해발생(藥害發生) 양상(樣相)과 경감대책(輕減對策))

  • Kim, K.U.
    • Korean Journal of Weed Science
    • /
    • v.12 no.3
    • /
    • pp.261-270
    • /
    • 1992
  • Many herbicides that are applied at the soil before weed emergence inhibit plant growth soon after weed germination occurs. Plant growth has been known as an irreversible increase in size as a result of the processes of cell divison and cell enlargement. Herbicides can influence primary growth in which most new plant tissues emerges from meristmatic region by affecting either or both of these processes. Herbicides which have sites of action during interphase($G_1$, S, $G_2$) of cell cycle and cause a subsequent reduction in the observed frequency of mitotic figures can be classified as an inhibitor of mitotic entry. Those herbicides that affect the mitotic sequence(mitosis) by influencing the development of the spindle apparatus or by influencing new cell plate formation should be classified as causing disruption of the mitotic sequence. Sulfonylureas, imidazolinones, chloroacetamides and some others inhibit plant growth by inhibiting the entry of cell into mitosis. The carbamate herbicides asulam, carbetamide, chlorpropham and propham etc. reported to disrupt the mitotic sequence, especially affecting on spindle function, and the dinitroaniline herbicides trifluralin, nitralin, pendimethalin, dinitramine and oryzalin etc. reported to disrupt the mitotic sequence, particularly causing disappearence of microtubles from treated cells due to inhibition of polymerization process. An inhibition of cell enlargement can be made by membrane demage, metabolic changes within cells, or changes in processes necessary for cell yielding. Several herbicides such as diallate, triallate, alachlor, metolachlor and EPTC etc. reported to inhibit cell enlargement, while 2, 4-D has been known to disrupt cell enlargement. One potential danger inherent in the use of soil acting herbicides is that build-up of residues could occur from year to year. In practice, the sort of build-up that would be disastrous is unikely to occur for substances applied at the correct soil concentration. Crop injury caused by soil applied herbicides can be minimized by (1) following the guidance of safe use of herbicides, particularly correct dose at correct time in right crop, (2) by use of safeners which protect crops against injury without protecting any weed ; interactions between herbicides and safeners(antagonists) at target sites do occur probably from the following mechanisms (1) competition for binding site, (2) circumvention of the target site, and (3) compensation of target site, and another mechanism of safener action can be explained by enhancement of glutathione and glutathione related enzyme activity as shown in the protection of rice from pretilachlor injury by safener fenclorim, (3) development of herbicide resistant crops ; development of herbicide-resistant weed biotypes can be explained by either gene pool theory or selection theory which are two most accepted explanations, and on this basis it is likely to develop herbicide-resistant crops of commercial use. Carry-over problems do occur following repeated use of the same herbicide in an extended period of monocropping, and by errors in initial application which lead to accidental and irregular overdosing, and by climatic influence on rates of loss. These problems are usually related to the marked sensitivity of the particular crops to the specific herbicide residues, e.g. wheat/pronamide, barley/napropamid, sugarbeet/ chlorsulfuron, quinclorac/tomato. Relatively-short-residual product, succeeding culture of insensitive crop to specific herbicide, and greater reliance on postemergence herbicide treatments should be alternatives for farmer practices to prevent these problems.

  • PDF