• 제목/요약/키워드: Chloroplast sequence

검색결과 121건 처리시간 0.027초

미토콘드리아 coxIII 유전자 염기서열에 의한 수 종의 한국산 장고말속 식물(녹조식물문)의 계통분류학적 유의성 (A Phylogenetic Significance of Several Species from Genus Cosmarium (Chlorophyta) of Korea Based on Mitochondrial coxIII Gene Sequences)

  • 문병렬;이옥민
    • ALGAE
    • /
    • 제18권3호
    • /
    • pp.199-205
    • /
    • 2003
  • It has been considered that genus Cosmarium including Staurastrum had the problems in grouping by morphological characters. Sequence data for the Cytochrome Oxidase subunit III (coxIII) were employed to compare with taxa of two divisions of this genus, with sections in each, for evaluating the taxonomic stability of these morphological characters. The division and section systems were not coincided with the phylogeny inferred from coxIII sequences, as the previous reports from us using nuclear rDNA ITS and chloroplast rbcL sequence comparisons in this genus. Two taxa of Staurastrum were not placed within a same clade each other, and one taxon of these was grouped in Arthrodesmus clade. Two genera, Cosmarium and Staurastrum, cannot be regarded as monophyletic from this result. Mitochondrial coxIII gene was considered as a useful phylogenetic tool to evaluate evolutionary relationships of desmids as in the case of land plants.

Differentially Expressed Genes of Potentially Allelopathic Rice in Response against Barnyardgrass

  • Junaedi, Ahmad;Jung, Woo-Suk;Chung, Ill-Min;Kim, Kwang-Ho
    • Journal of Crop Science and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.231-236
    • /
    • 2007
  • Differentially expressed genes(DEG) were identified in a rice variety, Sathi, an indica type showing high allelopathic potential against barnyardgrass(Echinochloa crus-galli(L.) Beauv. var. frumentaceae). Rice plants were grown with and without barnyardgrass and total RNA was extracted from rice leaves at 45 days after seeding. DEG full-screening was performed by $GeneFishing^{TM}$ method. The differentially expressed bands were re-amplified and sequenced, then analyzed by Basic Local Alignment Search Tool(BLAST) searching for homology sequence identification. Gel electrophoresis showed nine possible genes associated with allelopathic potential in Sathi, six genes(namely DEG-1, 4, 5, 7, 8, and 9) showed higher expression, and three genes(DEG-2, 3 and 6) showed lower expression as compared to the control. cDNA sequence analysis showed that DEG-7 and DEG-9 had the same sequence. From RT PCR results, DEG-6 and DEG-7 were considered as true DEG, whereas DEG-1, 2, 3, 4, 5, and 8 were considered as putative DEG. Results from blast-n and blast-x search suggested that DEG-1 is homologous to a gene for S-adenosylmethionine synthetase, DEG-2 is homologous to a chloroplast gene for ribulose 1,5-bisphosphate carboxylase large subunit, DEG-8 is homologous to oxysterol-binding protein with an 85.7% sequence similarity, DEG-5 is homologous to histone 2B protein with a 47.9% sequence similarity, DEG-6 is homologous to nicotineamine aminotransferase with a 33.1% sequence similarity, DEG-3 has 98.8% similarity with nucleotides sequence that has 33.1% similarity with oxygen evolving complex protein in photosystem II, DEG-7 is homologous to nucleotides sequence that may relate with putative serin/threonine protein kinase and putative transposable element, and DEG-4 has 98.8% similarity with nucleotides sequence for an unknown protein.

  • PDF

Structural Analysis and Transcriptional Regulation of the Chloroplast psbC Gene from Panax ginseng

  • Yoo, Ki-Yeol;Tae, Gun-Sik
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.129-133
    • /
    • 2005
  • The psbC gene, encoding the intrinsic chlorophyll-binding protein of CP43, one of the PS core complex polypeptides, was cloned from the Panax ginseng chloroplast, which is composed of 1,422 nucleotides and the overall nucleotide sequence shows more than 84% identity to those of eukaryotic photosynthetic organisms. The predicted topology of CP43, based on hydropathy analysis, includes six membrane-spanning ${\alpha}-helices$ resulting in three lumenal and four stromal loops. The putative translation start codon for the psbC gene is located at 48 nucleotides upstream from the stop codon of the psbD gene whose product is also a component of the PSII reaction center, implying that the promoter of the psbC gene is possibly located in the middle of the structural gene of the psbD gene. Northern blot analysis of the in vivo accumulation of the psbC transcript from the plants grown under the various growth light intensities (5%, 10%, 20%, and 100%) of daylight indicated that the steady-state level of the psbC transcript was not significantly affected by light intensity.

  • PDF

New Record of Two Derbesia Species (Chlorophyta) in Korea

  • An, Jae Woo;Kang, Pil Joon;Nam, Ki Wan
    • 환경생물
    • /
    • 제36권2호
    • /
    • pp.150-155
    • /
    • 2018
  • Two siphonous green algae were collected from the eastern coast of Korea. These species share the typical features of Derbesia sporophytes, such as erect and prostrate siphonous filaments and the presence of basal septum in lateral branches. One is characterized by the combined features of a relatively small tufted sporophytic thalli arising from a rhizoidal base, subdichotomously branched filaments with a basal septum and one pyrenoid per subspherical to lenticular chloroplast. The other shows a larger sporophytic thallus, sparsely subdichotomously branched filaments with a basal septum and one pyrenoid per spherical chloroplast. In a phylogenetic tree based on rbcL sequence, the two above-mentioned Korean algae nest in the same clades as Derbesia minima and D. indica, respectively. The genetic distance between the sequences within the clades was 0.5-0.8%, which is considered to be included in the intra-specific range for the genus. These two siphonous Korean algae are identified as D. minima and D. indica, respectively, based on the morphological and molecular analyses. These species are newly recorded in the Korean marine algal flora herein.

Complete Genome Sequences of Crepidiastrum denticulatum (Asteraceae)

  • Jung, Joonhyung;Hyun, Jongyoung;Do, Hoang Dang Khoa;Kim, Joo-Hwan
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2018년도 춘계학술발표회
    • /
    • pp.37-37
    • /
    • 2018
  • The genus Crepidiastrum (Asteraceae), containing ca. 20 species, is mainly distributed in Asia. Crepidiastrum denticulatum, an edible plant that commonly call "e-go-deulppae-gi" in Korean, distributes in Korea, Japan, and China. The complete chloroplast (cp) genome sequences of C. denticulatum was characterized from MiSeq2000 (Illumina Co.) pair-end sequencing data. The cp genome of C. denticulatum has a total sequence length of 152,689 bp and show a typical quadripartite structure. It consists of the large single copy (LSC: 84,022 bp), small single copy (SSC: 18,519 bp), separated by a pair of inverted repeats (IRs: 25,074 bp) and contains 110 unique genes and 18 genes duplicated in the IR regions. Our comparative analysis identified three cpDNA regions (matK, rbcL, and psbA-trnH) from three Crepidiastrum species, which may be useful for molecular identification of each species, and providing a guideline for its clear confirming about dried medical herb.

  • PDF

Characteristics of the complete plastid genome sequence of Lindera angustifolia (Lauraceae) in the geographically separated northern edge

  • GANTSETSEG, Amarsanaa;KIM, Jung-Hyun;HYUN, Chang Woo;HAN, Eun-Kyeong;LEE, Jung-Hyun
    • 식물분류학회지
    • /
    • 제52권2호
    • /
    • pp.114-117
    • /
    • 2022
  • Lindera angustifolia is mainly distributed in the temperate climate zone of China but shows an extraordinary distribution, disjunctively isolated on the western coastal islands of Korea. We therefore present the complete chloroplast genome of Korean L. angustifolia. The complete plastome was 152,836 bp in length, with an overall GC content of 39.2%. A large single copy (93,726 bp) and a small single copy (18,946 bp) of the genome were separated by a pair of inverted repeats (20,082 bp). The genome consists of 125 genes, including 81 protein-coding, eight ribosomal RNA, and 36 transfer RNA genes. While five RNA editing genes (psbL, rpl2, ndhB×2, and ndhD) were identified in L. angustifolia from China, the "ndhD" gene was not recognized as an RNA editing site in the corresponding Korean individual. A phylogenetic analysis revealed that Korean L. angustifolia is most closely related to the Chinese L. angustifolia with strong bootstrap support, forming a sister group of L. glauca.

Molecular systematics of Poaceae based on eight chloroplast markers, emphasizing the phylogenetic positions of Korean taxa

  • LEE, Jung-Hoon;KIM, Ki-Joong;KIM, Bo-Yun;KIM, Young-Dong
    • 식물분류학회지
    • /
    • 제52권3호
    • /
    • pp.127-143
    • /
    • 2022
  • This study was conducted to clarify the phylogenetic position and relationships of Korean Poaceae taxa. A total of 438 taxa including 155 accessions of Korean Poaceae (representing 92% and 72% of Korean Poaceous genera and species, respectively) were employed for phylogeny reconstruction. Sequence data of eight chloroplast DNA markers were used for molecular phylogenetic analyses. The resulted phylogeny was mostly concordant with previous phylogenetic hypotheses, especially in terms of subfamilial and tribal relationships. Several taxa-specific indels were detected in the molecular phylogeny, including a 45 bp deletion in rps3 (PACMAD [Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae] clade), a 15 bp deletion in ndhF (Oryzeae + Phyllorachideae), a 6 bp deletion in trnLF (Poeae s.l.), and two (17 bp and 378 bp) deletions in atpF-H (Pooideae). The Korean Poaceae members were classified into 23 tribes, representing eight subfamilies. The subfamilial and tribal classifications of the Korean taxa were generally congruent with a recently published system, whereas some subtribes and genera were found to be non-monophyletic. The taxa included in the PACMAD clade (especially Andropogoneae) showed very weak and uncertain phylogenetic relationships, presumably to be due to evolutionary radiation and polyploidization. The reconstructed phylogeny can be utilized to update the taxonomic positions of the newly examined grass accessions.

A new record of Ardisia×walkeri, a hybrid of A. japonica and A. pusilla, (Primulaceae) from Jeju Island, Korea

  • Goro Kokubugata;Satoshi Kakishima;Chan-ho Park;Takuro Ito;Atsushi Abe;Chikako Ishii;Gwan-Pil Song
    • Journal of Species Research
    • /
    • 제12권3호
    • /
    • pp.258-265
    • /
    • 2023
  • We conducted phylogenetic analyses using multiplexed inter-simple sequence repeat genotyping by sequencing and compared chloroplast DNA sequences among Ardisia japonica, A. pusilla, and morphologically intermediate plants found on Jeju Island, Korea. Our network analysis demonstrated that the intermediate plants were genetically positioned between A. japonica and A. pusilla. Our comparison of the intergenic spacer between the psbA and trnH genes in chloroplast DNA indicated that four nucleotide substitutions separate A. japonica and A. pusilla, whereas the intermediate plants exhibited the A. japonica haplotype. Our results suggest that the intermediate plants on Jeju Island represent a natural hybrid of A. japonica, as the maternal species, and A. pusilla, and that they are attributable to Ardisia×walkeri. This record constitutes the first documented occurrence of the hybrid taxon in Korea.

엽록체 DNA를 이용한 섬괴불나무(Lonicera insularis Nakai)의 종내변이 및 지리학적 연구 (Intraspecific variation and geographic study of Lonicera insularis (Caprifoliaceae) based on chloroplast DNA sequences)

  • 정금선;김미선;이웅;박재홍
    • 식물분류학회지
    • /
    • 제44권3호
    • /
    • pp.202-207
    • /
    • 2014
  • 섬괴불나무(Lonicera insularis Nakai)는 인동과(Caprifoliaceae) 인동속(Lonicera L.) 에 속하는 관목으로 울릉도와 독도의 해안가 지역에 분포하는 한국특산식물이다. 섬괴불나무와 인동속의 근연종인 괴불나무, 청괴불나무, 각시괴불나무, 길마가지나무, L. morrowii, 병꽃나무 7분류군과의 유연관계를 밝히고, 섬괴불나무의 종내 변이를 확인하기 위해 엽록체 DNA 5개 영역의 염기서열을 분석하였다. 분석결과 전체 3.2kb의 염기서열이 결정되었고, 섬괴불나무와 L. morrowii 에서 2개의 엽록체 DNA haplotype(CP01-02)이 결정되었다. 섬괴불나무는 한 개의 염기치환으로 CP01 type과 CP02 type으로 구별되었으며, 일본의 L. morrowii와는 CP02 type을 공유하였다. 섬괴불나무에서 확인 된 두 개의 CP type은 1) 진화적으로 뚜렷한 두 개 이상의 계통을 가지며, 이는 하나 이상의 유입경로를 통해 울릉도로 유입되었을 가능성을 높게 지지한다. 그리고, 2) 형태학적으로 구별되는 섬괴불나무와 L. morrowii의 CP type의 공유는 두 종의 지리적인 장벽에 의한 이소적종분화의 결과로 추론할 수 있다. 본 연구에서 확인된 울릉도와 독도의 섬괴불나무의 종내 변이 및 다양성에 관한 결과는 울릉도 및 독도 식물의 분자생물지리학적 연구로 대양섬의 생물학적 진화양상과 종 분화 과정에 중요한 기초 자료로 활용될 것이다.

Solanum acaule 색소체 유전자형 선발을 위한 특이적 분자마커 개발 (PCR-based markers to select plastid genotypes of Solanum acaule)

  • 박태호
    • Journal of Plant Biotechnology
    • /
    • 제49권3호
    • /
    • pp.178-186
    • /
    • 2022
  • 볼리비아 유래의 4배체 감자 야생종 중 하나인 Solanum acaule는 서리, 감자역병, 감자바이러스X, 감자바이러스Y, 감자잎말림바이러스, 감자걀쭉병, 선충 등에 대한 저항성과 같이 감자의 신품종 육성에 매우 유용한 형질들을 가지고 있어 감자 육종에 많이 이용되고 있다. 그러나 이러한 유용 형질들을 재배종 감자에 전통적인 교잡에 의해 도입하는 것은 야생종과 재배종 간의 서로 다른 EBN에 따라 매우 제한적이다. 따라서, 이러한 생리적 장벽을 극복하기 위해서는 체세포융합을 이용할 수 있는데, 육종에 활용할 적절한 체세포융합체를 선발하기 위해서는 적절한 분자마커의 개발이 필수적이다. 이에, 본 연구에서는 앞서 차세대 유전체 기술에 의해 완성되어 보고된 S. acaule의 엽록체 전장 유전체 정보를 기반으로 이를 다른 8개의 Solanum 종의 엽록체 전장 유전체 정보와 비교를 통해 S. acaule 특이적인 분자마커를 개발하였다. S. acaule의 엽록체 전장 유전체 총 길이는 155,570 bp였으며, 총 158개의 유전자로 구성되어 있었다. 전체적인 구조와 유전자의 구성은 다른 Solanum 종들과 매우 유사하였고 12종의 다른 가지과에 속해 있는 종과의 계통수 분석에서 다른 Solanum 종과 매우 가까운 유연관계를 가지는 것을 확인하였다. S. acaule의 엽록체 전장 유전체와 다른 7개 Solanum 종의 엽록체 전장 유전체 다중 정렬의 결과로 각각 4개와 79개의 S. acaule 특이적인 InDel 및 SNP 영역이 확인되었으며, 이 정보를 이용하여 각각 1개씩의 InDel 및 SNP 영역 유래의 PCR 기반의 분자마커를 개발하였다. 본 연구의 결과는 S. acaule의 진화적 측면에서의 연구와 S. acaule를 이용한 감자품종 육성 연구에 기여를 할 수 있을 것이다.