• Title/Summary/Keyword: Chlorophyll index

검색결과 291건 처리시간 0.026초

OBSERVATION OF MICROPHYTOBENTHIC BIOMASS IN HAMPYEONG BAY USING LANDSAT TM IMAGERY

  • Choi, Jae-Won;Won, Joon-Sun;Lee, Yoon-Kyung;Kwon, Bong-Oh;Koh, Chul-Hwan
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.441-444
    • /
    • 2005
  • The goal of this study is to investigate the relationship between microphytobenthic biomass and normalized vegetation index obtained from Landsat TM images. Monitoring a seasonal change of microphytobenthic biomass in the sand bar is specifically focused. Since the study area, Hampyeong Bay, was difficult to approach, we failed to obtain ground truths simultaneously on satellite image acquisition. Instead, chlorophyll-a concentration in surface top layer was measured on different dates for microphytobenthic biomass. Although data were acquired on different dates, a correlation between the field and satellite images was calculated for investigating general trends of seasonal change. NDVI and tasseled cap transformed images were also used to review the variation of microphytobenthic biomass by using Landsat TM and ETM+ images. Atmosphere effects were corrected by applying COST model. Seaweeds were also flouring in the same season of microphytobentic blooming. Songseok-ri area was minimally affected by seaweeds from February to May, and selected as a test site. NDVI value was classified into high-, moderate-, and low-grade. It was well developed over fme-grained sediments and rapidly reduced from May to November over sand bar. In this bay, correlation between grain size and microphytobenthic biomass was clearly seen. From the classified NDVI and tasseled cap transformed data, we finally constructed spatial distribution and seasonal variation maps of microphytobenthic biomass.

  • PDF

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • 제40권1호
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

Endophytic Bacteria Improve Root Traits, Biomass and Yield of Helianthus tuberosus L. under Normal and Deficit Water Conditions

  • Namwongsa, Junthima;Jogloy, Sanun;Vorasoot, Nimitr;Boonlue, Sophon;Riddech, Nuntavan;Mongkolthanaruk, Wiyada
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권11호
    • /
    • pp.1777-1789
    • /
    • 2019
  • Drought is more concerned to be a huge problem for agriculture as it affects plant growth and yield. Endophytic bacteria act as plant growth promoting bacteria that have roles for improving plant growth under stress conditions. The properties of four strains of endophytic bacteria were determined under water deficit medium with 20% polyethylene glycol. Bacillus aquimaris strain 3.13 showed high 1-aminocyclopropane-1-carboxylate (ACC) deaminase production; Micrococcus luteus strain 4.43 produced indole acetic acid (IAA). Exopolysaccharide production was high in Bacillus methylotrophicus strain 5.18 while Bacillus sp. strain 5.2 did not show major properties for drought response. Inoculation of endophytic bacteria into plants, strain 3.13 and 4.43 increased height, shoot and root weight, root length, root diameter, root volume, root area and root surface of Jerusalem artichoke grown under water limitation, clearly shown in water supply at 1/3 of available water. These increases were caused by bacteria ACC deaminase and IAA production; moreover, strain 4.43 boosted leaf area and chlorophyll levels, leading to increased photosynthesis under drought at 60 days of planting. The harvest index was high in the treatment with strain 4.43 and 3.13 under 1/3 of available water, promoting tuber numbers and tuber weight. Inulin content was unchanged in the control between well-watered and drought conditions. In comparison, inulin levels were higher in the endophytic bacteria treatment under both conditions, although yields dipped under drought. Thus, the endophytic bacteria promoted in plant growth and yield under drought; they had outstanding function in the enhancement of inulin content under well-watered condition.

Effect of azoxystrobin fungicide on the physiological and biochemical indices and ginsenoside contents of ginseng leaves

  • Liang, Shuang;Xu, Xuanwei;Lu, Zhongbin
    • Journal of Ginseng Research
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2018
  • Background: The impact of fungicide azoxystrobin, applied as foliar spray, on the physiological and biochemical indices and ginsenoside contents of ginseng was studied in ginseng (Panax ginseng Mey. cv. "Ermaya") under natural environmental conditions. Different concentrations of 25% azoxystrobin SC (150 g a.i./ha and 225 g a.i./ha) on ginseng plants were sprayed three times, and the changes in physiological and biochemical indices and ginsenoside contents of ginseng leaves were tested. Methods: Physiological and biochemical indices were measured using a spectrophotometer (Shimadzu UV-2450). Every index was determined three times per replication. Extracts of ginsenosides were analyzed by HPLC (Shimadzu LC20-AB) utilizing a GL-Wondasil $C_{18}$ column. Results: Chlorophyll and soluble protein contents were significantly (p = 0.05) increased compared with the control by the application of azoxystrobin. Additionally, activities of superoxide dismutase, catalase, ascorbate peroxidase, peroxidase, and ginsenoside contents in azoxystrobin-treated plants were improved, and malondialdehyde content and $O_2^-$ contents were reduced effectively. Azoxystrobin treatments to ginseng plants at all growth stages suggested that the azoxystrobin-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species. When the dose of azoxystrobin was 225 g a.i./ha, the effect was more significant. Conclusion: This work suggested that azoxystrobin played a role in delaying senescence by changing physiological and biochemical indices and improving ginsenoside contents in ginseng leaves.

Chemical Water Quality and Fish Component Analyses in the Periods of Before- and After-the Weir Constructions in Yeongsan River

  • Kwak, Sang Do;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • 제39권1호
    • /
    • pp.99-110
    • /
    • 2016
  • The objective of this study was to analyze chemical water quality, ecological characteristics of fish compositions, and ecosystem health before- (Bwc; 2008-2009) and after-the weir construction (Awc; 2011-2012) at Juksan Weir and Seungchon Weir of Yeongsan River watershed. Suspended solids (SS) and chlorophyll-a (Chl-a) in Juksan Weir increased, whereas nutrients such as total nitrogen (TN) and total phosphorus (TP) decreased in the epilimnetic water. In Juksan and Seungchon weirs, fish species distribution analysis in the periods of Bwc and Awc showed that sensitive species were rare and tolerant species were dominant in the community. In the analysis of trophic guild, relative abundance of carnivore species are increased to 22% and 12%, respectively, after the constructions of Seungchon Weir and Juksan Weir. Mann-Whitney U-tests of nonparametric statistical analysis indicated that omnivore and carnivore species had significant differences (p < 0.05) between the Bwc and Awc. The massive population growth of an exotic species, Micropterus salmoides, was evident in Seungchon Weir to influence on the structures of fish communities. The model values of mean Index of Biological Integrity (IBI), based on fish assemblages, were < 15, which indicates "poor" condition in the river health, and the significant difference of IBI values was not found between the Bwc and Awc.

키토산과 목초액 처리가 고추의 생육 및 양분흡수에 미치는 영향 (Effect of Chitosan and Wood Vinegar on the Growth and Nutrient Absorption of Red Pepper (Capsicum annum L.))

  • 엄미정;박현철;문영훈;김갑철;한수곤
    • 생물환경조절학회지
    • /
    • 제11권2호
    • /
    • pp.67-73
    • /
    • 2002
  • 유기농자재인 목초액과 키토산의 농업적 이용을 위하여 고추의 생육과 양분흡수 및 토양미생물상에 미치는 영향을 살펴본 결과는 다음과 같다. 키토산 처리구에서 토양의 방선균수가 증가하고 사상균 수는 감소하는 경향으로 A/F 및 B/F비가 커졌으며, 정식 후 50일에 경경이 약간 큰 편이었으나, 엽록소함량은 처리별 큰 차이를 보이지 않았다. 병해충은 관행에 비해 키토산 및 목초액 처리구 모두 발생률이 많아 병해충의 방제효과는 볼 수 없었다. 식물체 분석 결과 키토산과 목초액 처리구 모두 Ca, K가 관행보다 다소 높았으며 키토산 처리구는 과실의 무기성분 중 Ca와 K와 같은 양이온 함량이 다소 많은 편이었다 키토산과 목초액 처리에 의한 수량은 병해충 발생으로 관행에 비하여 모든 시험구에서 감소하여 수량증대효과는 기대할 수 없었으나. 과중 등의 과실특성이 좋게 나타나 키토산 10회 처리의 경우 관행대비 92.4%로 관행에 가까운 수량지수를 보였다.

Alteration of plant hormones in transgenic rice (Oryza sativa L.) by overexpression of anti-apoptosis genes during salinity stress

  • Ubaidillah, Mohammad;Safitri, Fika Ayu;Lee, Sangkyu;Park, Gyu-Hwan;Kim, Kyung-Min
    • Journal of Plant Biotechnology
    • /
    • 제42권3호
    • /
    • pp.168-179
    • /
    • 2015
  • We previously identified the rice gene, OsSAP, as an encoder of a highly conserved putative senescence-associated protein that was shown to have anti-apoptotic activity. To confirm the role of OsSAP in inducing abiotic stress tolerance in rice, we introduced OsSAP and AtBI-1, a plant homologue of Bax inhibitor-1, under the control of the CaMV 35S promoter into the rice genome through Agrobacterium-mediated transformation. The OsSAP transformants showed a similar chlorophyll index after salinity treatments with AtBI-1. Furthermore, we compared the effects of salinity stress on leaves and roots by examining the hormone levels of abscisic acid (ABA), jasmonic acid (JA), gibberellic acid (GA3), and zeatin in transformants compared to the control. With the exception of phytohormones, stress-induced changes in hormone levels putatively related to stress tolerance have not been investigated previously. Hormonal level analysis confirmed the lower rate of stress in the transformants compared to the control. The levels of ABA and JA in OsSAP and AtBI-1 transformants were similar, where stress rates increased after one week and decreased after a two week period of drought; there was a slightly higher accumulation compared to the control. However, a similar trend was not observed for the level of zeatin, as the decrease in the level of zeatin accumulation differed in both OsSAP and AtBI-1 transformants for all genotypes during the early period of salinity stress. The GA3 level was detected under normal conditions, but not under salinity stress.

소규모 생태연못(원흥이 방죽)의 부영양화 평가 (Evaluation of Trophic State of a Small-scale Pond (Wonheung) in Ecological Park)

  • 이흥수;정세웅;최정규;신상일
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.741-749
    • /
    • 2008
  • Many small-scale ponds that serve as ecological habitat, recreation and irrigation are faced to eutrophication problem, which causes aesthetic nuisance and ultimately loss of their functions. Thus accurate evaluation of the trophic state of these ponds is essential to provide rational information to the stakeholders so that they can develop effective management actions. In this study, the trophic state of a small pond (Wonheung) that experiencing water quality degradation due to vicinity land development was assessed using various Trophic State Indexes (TSIs) and statistical analysis including Principal Components Analysis (PCA) based on the field monitoring data obtained from May to December, 2007. The results showed that the pond is under eutrophic state with average total nitrogen (T-N) and total phosphorus (T-P) concentrations of $708.1{\mu}g/L$ and $59.3{\mu}g/L$, respectively. The factor loading plot obtained from PCA showed distinct two influencing factors, PC 1 and PC 2. PC 1 was grouped by T-P, Chlorophyll a (Chl-a), suspended solids (SS), TN/TP ratio, and transparency that all strongly related to the eutrophication state, while PC 2 by temperature, conductivity, dissolved oxygen (DO) and turbidity that explains the seasonal water quality variations. The limiting factor was identified as light rather than phosphorus by both T-N/T-P ratio and TSI indexes analysis. The results and methodology adopted in this study can be used for water quality assessment for other small ponds and lakes.

STATUS OF GOCI DATA PROCESSING SYSTEM(GDPS) DEVELOPMENT

  • Han, Hee-Jeong;Ahn, Yu-Hwan;Ryu, Joo-Hyung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.159-161
    • /
    • 2007
  • Geostationary Ocean Color Imager (GOCI), the world-first ocean remote sensing instrument on geostationary Communication, Ocean, Meteorological Satellite (COMS), will be able to take a picture of a large region several times a day (almost with every one hour interval). We, KORDI, are in charge for developing the GOCI data processing system (GDPS) which is the basic software for processing the data from GOCI. The GDPS will be based on windows operating system to produce the GOCI level 2 data products (useful for oceanographic environmental analysis) automatically in real-time mode. Also, the GDPS will be a user-interactive program by well-organized graphical user interfaces for data processing and visualization. Its products will be the chlorophyll concentration, amount of total suspended sediments (TSS), colored dissolved organic matters (CDOM) and red tide from water leaving radiance or remote sensing reflectance. In addition, the GDPS will be able to produce daily products such as water current vector, primary productivity, water quality categorization, vegetation index, using individual observation data composed from several subscenes provided by GOCI for each slit within the target area. The resulting GOCI level 2 data will be disseminated through LRIT using satellite dissemination system and through online request and download systems. This software is carefully designed and implemented, and will be tested by sub-contractual company until the end of this year. It will need to be updated in effect with respect to new/improved algorithms and the calibration/validation activities.

  • PDF

Nitrogen Management with Split Application of Urea for Direct-Seeding Rice in Wet Paddy

  • Lee, Ho-Jin;Seo, Jun-Han;Lee, Jung-Sam;Jung, Yong-Sang;Fred E. Below
    • 한국작물학회지
    • /
    • 제43권1호
    • /
    • pp.49-53
    • /
    • 1998
  • Direct-seeding has major advantages such as labor and cost saving by eliminating preparation of seed bed and transplanting. But, it required increased input of fertilizers and pesticides because of the extended paddy period. Direct seeding in wet paddy (DSWP) gives faster growth and more uniform seedling emergence than direct-seeding in dry paddy. This research had an objective to develop an efficient N management practices for DSWP with split application of N fertilizer. A paddy field experiment was conducted to evaluate effects of starter N and N-topdressing which was delayed N application until 5-leaf stage, with comparison to transplanting (TP). Total amount of N application were two levels; 110kg and 77kg/ha. The N applications were split four times during rice growth stages; starter, topdressing at 5-leaf stage, top dressing at tillering stage, and topdressing at panicle initiation stage. DSWP had more tillers/$m^2$ than TP, but with the delayed heading. The DSWP plots which received N-topdressing at 5-leaf stage without starter N had higher leaf area index (LAI) and leaf greenness than the TP plot. Also, these DSWP plots had high leaf-N concentration at the heading stage, as calculated from leaf chlorophyll meter readings. Rice yield in DSWP with N-topdressing at 5-leaf stage was significantly higher than that in TP and in DSWP with starter N. Energy and N use efficiency were improved in DSWP with N-topdressing at 5-leaf stage. But, there were no significant differences in grain yield between the two levels of total amounts of N applications, 77kg and 110kg/ha. We concluded that starter N could not be used effectively by rice seedlings, but topdressing N at 5-leaf stage was an efficient N management for rice growth and yield in DSWP system.

  • PDF