• Title/Summary/Keyword: Chlorolplast

Search Result 2, Processing Time 0.017 seconds

Cytochrome c and Chloroplast were Used for an Artificial Approach to Confirming the Irreversible Catalysis by Mitochondrial Cytochrome Oxidase

  • Song, Ji-Young;Lee, Jae-Yang;Lee, Sang-Jik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.285-288
    • /
    • 2000
  • Ferricytochrome c was artificially made to receive the aqueous electrons evolved through the influence of illuminated chloroplast. This ferricytochrome c, which was bombarded by electrons, was reduced to ferrocytochrome c by making sure that a certain cytochrome is reduced. This may require an electronic attack that is created by the chloroplast inside the plant cell. The possibility of reversing the oxidation of ferrocytochrome c by cytochrome oxidase was examined using a contrived redox system composed of cytochrome oxidase, ferricytochrome c and chloroplast with illumination. We recognized that the oxidase is unserviceable for the reversibleness in spite of the existence of chloroplast.

  • PDF

Morphological Changes of Tissue in Cucumber Seedlings Grown in High Soil EC (높은 토양 EC에서 자란 오이묘 조직의 행태적 변화)

  • Chung, Hee-Don;Choi, Young-Jun
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.501-504
    • /
    • 2001
  • The effect of soil EC on tissue morphology of leaf and shoot tip in cucumber (Cucumis sativus L. cv. Euinchim-baekdadagi) seedlings was investigated. Number of trichomes on leaf upper epidermis increased with the increase in soil EC from 1.0 to $3.0dS{\cdot}m^{-1}$, but the shape and number of stomata on lower epidermis remained unchanged. Epidermal cells of cucumbers grown in EC $1.5dS{\cdot}m^{-1}$ soil was occupied mostly by large vacuole whereas those grown in EC $3.0dS{\cdot}m^{-1}$ soil were filled with a nucleus, mitochondria, chloroplast and other micro-organelles. Sponge parenchima cells were also larger and contained fewer chloroplasts at EC $1.5dS{\cdot}m^{-1}$ than those grown at EC $3.0dS{\cdot}m^{-1}$. Leaf thickness decreased at high EC and the color of epidermal cells became significantly darker on the photograph of optical microscope. Normal tissue differentiation was greatly suppressed in plants grown in soils with $3.5dS{\cdot}m^{-1}$ or higher EC.

  • PDF