• Title/Summary/Keyword: Chlorine Control

Search Result 229, Processing Time 0.052 seconds

Effect of Chlorine Dioxide, Cold Plasma Gas Sterilization and MAP Treatment on the Quality and Microbiological Changes of Paprika During Storage (이산화염소 및 저온 플라즈마 가스 살균 및 MAP 처리가 파프리카의 저장 중 품질과 미생물학적 변화에 미치는 영향)

  • In-Lee, Choi;Joo Hwan, Lee;Yong Beom, Kwon;Yoo Han, Roh;Ho-Min, Kang
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.223-229
    • /
    • 2022
  • This study was conducted to investigate the effect of packaging methods and sterilization treatment on storability and microbial control in paprika fruits. When treated with chlorine dioxide gas for 3, 6, and 12 hours and cold plasma gas for 1, 3, and 6 hours, and then packed in a carton box and stored in a 8 ± 1℃ chamber for 7 days, chlorine dioxide treated 12 hours and plasma treated 6 hours was prevented the development of E·coli and YM(yeast and mold). Accordingly, the control was treated with chlorine dioxide for 12 hours and plasma for 6 hours, packed using a carton box and 40,000 cc·m-2·day-1·atm-1 OTR film (MAP), and stored in a 8 ± 1℃ chamber for 20 days. Fresh weight loss rate during storage was less than 1% in the MAP treatments, and the visual quality of the MAP treatments was above the marketability limit until the end of storage. There was no difference in the contents of oxygen, carbon dioxide, and ethylene in the film. In the case of firmness, the chlorine dioxide treatments was low, and the Hunter a* value, which showed chromaticity, was highest in the Plasma 6h MAP treatment. Off-odor was investigated in the MAP treatments, but it was very low. The rate of mold growth on the fruit stalk of paprika was the fastest and highest in the chlorine dioxide treated box packaging treatments, and the lowest in the chlorine dioxide treated MAP treatments at the end of storage. The aerobic count in the pulp on the storage end date was the lowest in the plasma treated box packaging treatments, the lowest number of E·coli in the chlorine dioxide treated MAP treatments, and the lowest yeast & mold in the chlorine dioxide treated box packaging treatments. As a result, for the inhibition of microorganisms during paprika storage, it is considered appropriate to treat plasma for 6 hours before storage regardless of the packaging method.

Effects of a Pre-Filter and Electrolysis Systems on the Reuse of Brine in the Chinese Cabbage Salting Process

  • Kim, Dong-Ho;Yoo, Jae Yeol;Jang, Keum-Il
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • In this study, the effects of a pre-filter system and electrolysis system on the safe and efficient reuse of brine in the cabbage salting process were investigated. First, sediment filter-electrolyzed brine (SF-EB) was selected as brine for reuse. Then, we evaluated the quality and microbiological properties of SF-EB and Chinese cabbage salted with SF-EB. The salinity (9.4%) and pH (4.63) of SF-EB were similar to those of control brine (CB). SF-EB turbidity was decreased (from 0.112 to 0.062) and SF-EB residual chlorine (15.86 ppm) was higher than CB residual chlorine (0.31 ppm), and bacteria were not detected. Salinity (2.0%), pH (6.21), residual chlorine (0.39 ppm), chromaticity, hardness, and chewiness of cabbage salted with SF-EB were similar to those of cabbage salted with CB. The total bacterial count in cabbage salted with CB was increased as the number of reuses increased (from 6.55 to 8.30 log CFU/g), whereas bacteria in cabbage salted with SF-EB was decreased (from 6.55 to 5.21 log CFU/g). These results show that SF-EB improved the reusability of brine by removing contaminated materials and by sterilization.

Aqueous Chlorine Dioxide Treatment Improves the Shelf Life of Panax ginseng C.A. Meyer

  • Chun, Ho-Hyun;Song, Kyung-Bin
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.284-288
    • /
    • 2007
  • Effect of aqueous chlorine dioxide $(ClO_2)$ treatment on the quality change of fresh ginseng during storage was examined. Fresh ginseng samples were treated with 0, 50, and 100 ppm of $ClO_2$ solution, respectively, and stored at $4^{\circ}C$. Microbiological data of the fresh ginseng after $ClO_2$ treatment revealed that the populations of total aerobic bacteria, and yeast and mold were significantly reduced with the increase of $ClO_2$ concentration. In particular, the populations of total aerobic bacteria, and yeast and mold in the fresh ginseng decreased by 2.1 and 1.2 log CFU/g at 100 ppm $ClO_2$ treatment, respectively. Aqueous $ClO_2$ treatment improved the color of the fresh ginseng during storage, but there was no significant difference in weight loss during storage among treatments. Sensory evaluation results represented that the qualities of the fresh ginseng treated with aqueous $ClO_2$ during storage were better than those of the control. These results clearly indicate that aqueous $ClO_2$ treatment could be useful in decreasing the microbial growth and extending the shelf life of fresh ginseng.

Effect of Chlorine Treatment on the Rheological Properties of Soft Wheat Flour (박력분의 리올로지 특성에 대한 염소처리의 영향)

  • Han, Myung-Kyoo;Chang, Young-Sang;Shin, Hyo-Sun
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.327-331
    • /
    • 1989
  • In this study the Theological properties between C1-treated soft wheat flour and untreated soft wheat flour was determined. Chlorine treatment lowered pH of the flour in a linear fashion. Water absorption and dough stability was high in proportion to the increase of treatment level but mechanical tolerance index was reduced by each increment of chlorine. The valorimeter value did not exhibit reproducible trend on treatment of chlorine. In general, resistance(BU), resistance to extension and maximum viscosity(BU) were highest in control group; lowest in 1 oz./cwt. flour and tended to rise in 2 oz./cwt. flour when it fermented in chamber for 90 min and 135 min. The maximum viscosity was highest (1,160BU) in 4 oz./cwt. flour and temperature at maximum viscosity tended to rise gradually in proportion to the increase of treated level.

  • PDF

Machine learning model for residual chlorine prediction in sediment basin to control pre-chlorination in water treatment plant (정수장 전염소 공정제어를 위한 침전지 잔류염소농도 예측 머신러닝 모형)

  • Kim, Juhwan;Lee, Kyunghyuk;Kim, Soojun;Kim, Kyunghun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1283-1293
    • /
    • 2022
  • The purpose of this study is to predict residual chlorine in order to maintain stable residual chlorine concentration in sedimentation basin by using artificial intelligence algorithms in water treatment process employing pre-chlorination. Available water quantity and quality data are collected and analyzed statistically to apply into mathematical multiple regression and artificial intelligence models including multi-layer perceptron neural network, random forest, long short term memory (LSTM) algorithms. Water temperature, turbidity, pH, conductivity, flow rate, alkalinity and pre-chlorination dosage data are used as the input parameters to develop prediction models. As results, it is presented that the random forest algorithm shows the most moderate prediction result among four cases, which are long short term memory, multi-layer perceptron, multiple regression including random forest. Especially, it is result that the multiple regression model can not represent the residual chlorine with the input parameters which varies independently with seasonal change, numerical scale and dimension difference between quantity and quality. For this reason, random forest model is more appropriate for predict water qualities than other algorithms, which is classified into decision tree type algorithm. Also, it is expected that real time prediction by artificial intelligence models can play role of the stable operation of residual chlorine in water treatment plant including pre-chlorination process.

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide against Fusarium oxysporum f. sp. batatas Isolated from Stored Sweetpotato: Study II

  • Lee, Ye Ji;Jeong, Jin-Ju;Jin, Hyunjung;Kim, Wook;Jeun, Young Chull;Yu, Gyeong-Dan;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.437-444
    • /
    • 2019
  • Chlorine dioxide ($ClO_2$) has been widely used as an effective disinfectant to control fungal contamination during postharvest crop storage. In this study, Fusarium oxysporum f. sp. batatas SP-f6 from the black rot symptom of sweetpotato was isolated and identified using phylogenetic analysis of elongation factor 1-${\alpha}$ gene; we further examined the in vitro and in vivo inhibitory activities of $ClO_2$ gas against the fungus. In the in vitro medium tests, fungal population was significantly inhibited upon increasing the concentration and exposure time. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by treatment using various $ClO_2$ concentrations and treatment times to assess fungus-induced disease development in the slices. Lesion diameters decreased at the tested $ClO_2$ concentrations over time. When sweetpotato roots were dip-inoculated in spore suspensions prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations significantly decreased at the tested concentrations for 30-60 min. Taken together, these results showed that $ClO_2$ gas can effectively inhibit fungal growth and disease development caused by F. oxysporum f. sp. batatas on sweetpotato. Therefore, $ClO_2$ gas may be used as a sanitizer to control this fungus during postharvest storage of sweetpotato.

Quality Changes of Centella asiatica by Slow-released ClO2 Gas Gel-pack during Storage (서방형 이산화염소 가스 젤팩을 이용한 병풀의 저장 중 품질 변화)

  • Lee, Kyung-Haeng;Yu, Kwang-Won;Bae, Yun-Jung;Han, Ki-Jung;Jang, Da-Bin
    • The Korean Journal of Food And Nutrition
    • /
    • v.35 no.4
    • /
    • pp.247-252
    • /
    • 2022
  • To improve the shelf-life of Centella asiatica, Centella asiatica was treated with gel packs containing slow-released chlorine dioxide (ClO2) gas at 3-5 ppm for 20 days at 4℃. The weight loss rate, as well as the changes in pH, color, and texture of the treated samples, were investigated. The weight of the control and ClO2 gas-treated samples was decreased during the storage period. The change in weight of the control was slightly faster than that of the samples treated with 3 and 4 ppm ClO2 gas. The pH of the control and the ClO2 gas treated samples were decreased during the storage period and there was no significant difference between the control and ClO2 gas treated samples. Concerning color (lightness, redness, and yellowness) changes of Centella asiatica during the storage period, there was no significant difference between the control and ClO2 gas treated samples. The change in shear force in the leaf and stem of Centella asiatica during the storage period was slightly lower in the 4 ppm ClO2 gas treated samples (in the leaf) compared to the control and 3 and 4 ppm ClO2 gas treated samples (in the stem) compared to the control and 5 ppm ClO2 gas treated sample.

A study on Water Quality Changes in Distribution System (Factor analysis of deterioration of water quality & Modelling of free chlorine) (상수도 배관망에서의 수질변화에 관한 연구 (수질악화의 영향인자 분석과 잔류염소 모델링))

  • Lee, Hyun Dong;Chung, Won Sik;Moon, Sook Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.59-66
    • /
    • 1997
  • Although it produces well-treated water in water treatment plant, water quality at the tap can be changed depending on the state of pipes. It is because water quality deteriorates as plant water passes through pipeline networks. Therefore, the improvement of not only water treatment technology but also O & M of water pipelines is required to supply good water to consumers. The purpose of the study was to obtain the basic data of control technology for water quality in pipes through investigating water quality in distribution system. We selected 11 sampling sites and investigated water quality from plant to endpoint of distribution system. we also simulated decreasing tendency of free chlorine through pipeline network. As the result of water quality test, all parameters were below allowable levels, but some parameters had the possibility of being over levels. So there must be more work to set up proper countermeasure for violable parameters.

  • PDF

Quality Characteristics of Kwamegi (Semi-dried Coloabis saira) During Cold Air Drying after Washing with Various Washing Solutions (살균소독수로 세척한 후 냉풍건조한 꽁치과메기의 품질특성)

  • Kang, Sang-Mo;Lee, Won-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.74-80
    • /
    • 2015
  • In this study, the microbial control effect after treatment of washing solutions (tap water, electrolyzed water, chlorine dioxide solution) and quality changes were investigated when Kwamegi is produced by means of the cold air drying. The initial moisture rate of the sample was 56.62% before drying. At the beginning of drying period, moisture rate sharply fell down but as the experiment progressed, moisture reducing rate was smoothly decreased. The color difference of Kwamegi before drying was 42.40, but it was reduced depending on the increment of drying temperature and time. TBA value of the initial sample was 0.219, rancidity were increased continuously when drying progressed. Total amino acid content was showed the highest value at $25^{\circ}C$ for 36h and the lowest at $40^{\circ}C$ for 12h. From the fatty acids analysis, major fatty acids were consisted of the 14:0, 16:0 and 18:1 (18.1520.96%, 28.0632.51% and 17.0619.81%, respectively). The microbial control effect was biggest when Kwamegi was washed with chlorine dioxide 100ppm for 60s. The microbe of the Kwamegi, Pseudomonas sp. and Pseudomonas putida were identified.