• Title/Summary/Keyword: Chlorinated water

Search Result 129, Processing Time 0.033 seconds

Inactivation of Bacteriophage f2 with Chlorine (염소에 의한 bacteriophage f2의 살균작용)

  • Chi Kyung KIM;Kyung Hee MIN
    • Korean Journal of Microbiology
    • /
    • v.16 no.2
    • /
    • pp.62-70
    • /
    • 1978
  • Chlorine was used for inactivation of bacteriophage f2 at pH 5.5, 7.5, and 10.0 at $10^{\circ}C$. The inactivation rate phage with chlorine varied depending on the pH value and reaction time. Hypochlorous acid appeared to be the major species of free chlorine for the inactivation. Suevival of the phage treated with chlorine and infectivity of the RNA extracted from the chlorinated phage were examined. The RNA extracted from untreatd phage was chlorinated and its infectivity was assayed. All three samples showed similar rates of inactivation at pH 5.5 and 7.5, but the naked RNA was more susceptible to chlorine at pH 10.0. The rate of inactivation was compared naked RNA was more susceptible to chlorine at pH 10.0. The rate of inactivation was compared with specific and non-specific attachment of the phasge f2. The specific attachment of the phage increased after the phage had been inactivated by extended chlorination. Chlorine may penetrate to the becteriophage f2 by altering the structural integrity of the protein coat, but the main target of free chlorine for inactivation of the phage appeared to be the phage RNA.

  • PDF

The Characteristics of Wiper Blade Rubber with Surface Treatments (와이퍼 블레이드 고무의 표면 처리에 따른 특성)

  • Rho, Seung-Baik;Lim, Mi-Ae;Park, Jin-Kyu;Son, Jeon-Ik
    • Elastomers and Composites
    • /
    • v.33 no.1
    • /
    • pp.27-36
    • /
    • 1998
  • The surface of wiper blade(W/B) rubber was chlorinated by chemical treatment method using the hydrochloric acid(HCI) and sodium hypochlorite(NaOCl). From the results of contact angle measurement, friction coefficient measurement, and ATR-IR spectra, the surface characteristics of chlorinated W/B rubber with time of chlorination were studied. Contact angles for W/B rubber with increasing time of chlorination and chlorine concentration were measured for the water and ethylene glycol. From the results, contact angle fell rapidly with increasing time of chlorination and chlorine concentration, reaching a constant value after about 10min. And the wettability of W/B rubber surface by means of chlorination has been improved. For an unchlorinated W/B rubber, the friction coefficient with time of chlorination decreased from 1.27 to 0.20~0.23 on full chlorination. As the results it was considered that abrasion resistance of W/B rubber surface has been also improved. The values of pH and $Cl^-$ ion concentration in a chlorine treatment solution decreased as the extent of chlorination of W/B rubber surface increased. From the results of ATR-IR spectra, it was observed that C=C double band of W/B rubber surface transformed into C-Cl band, but quantitative determination of the extent of chlorination was not feasible because of the complexity of chlorination reactions.

  • PDF

Analysis on the contamination and source of VOCs in groundwaters of Gwangju area (광주광역시의 지하수 중 휘발성유기화합물(VOCs)의 오염과 오염원 분석)

  • Yun, Uk;Cho, Byong-Wook;Eum, Chul-Hun;Sung, Ik-Hwan
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.389-404
    • /
    • 2003
  • VOCs were detected in the 21 groundwaters out of 37 groundwaters sampled from around the Hanam Industrial Complex and the Gwangju stream. Ten components of chlorinated aliphatic hydrocarbons of VOCs were detected in the 18 groundwater samples. Among them, total trihalomethanes (TTHM) concentration is in the range of $0.1~36.2{\;}\mu\textrm{g}/L$, CECs concentration is $2.3~190{\;}\mu\textrm{g}/L$, and chlorinated solvents concentration containing PCE, TCE, etc. is $0.1~124.2{\;}\mu\textrm{g}/L$ respectively. Ten components of the aromatic hydrocarbons of VOCs were detected in the 5 groundwater samples, but their concentration are less than $1{\;}\mu\textrm{g}/L$. Detection frequency and concentration of the chlorinated aliphatic hydrocarbons components from the groundwaters in the Hanam Industrial Complex are higher than those of nearby downtown Gwangju stream. VOCs components except for TCE are lower than the MCL of USGS drinking water standard. TCE concentration of the 2 groundwater samples is over MCL, whose concentrations are 5 and 25 times higher than MCL, respectively. TCE is detected from the H8 and H10 groundwater samples and CFCs is detected H8 and H11 groundwater samples in the Hanam Industrial Complex. TTHM in study area is estimated from leakage of the main waters or sewage waters. Because most of the studied groundwater is under an aerobic condition, aromatic hydrocarbons are well degraded. But chlorinated aliphatic hydrocarbons are degraded very slowly.

Application of Membranes for Organic Liquid or Vapor Separation and Design of Plasma-Graft Filling-Polymerized Membranes

  • Yamaguchi, Takeo;Nakao, Shin-ichi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.34-39
    • /
    • 1996
  • There is much recent interests in applying membrane separation technologies, especially for organic liquid and vapor separation or removing dissolved organics from water. Pervaporation separation can separate azeotropic mixtures and mixtures close to boiling point, and it has a potential for energy saving process instead of distillation. Removal of chlorinated oraganics from water is other measure application for pervaporation separation. Contaminated pollutant must be removed from water, and a pervaporation can effectively remove the pollutant. Air pollution by organic vapor recently became serious enviromncntal problem, and removing organic vapor from air is important application of the membrane technology.

  • PDF

Studies on Chlorine Demand and Its Decay Kinetics in Chlorinated Sewage Effluents (하수의 염소 소독시 총잔류염소 감소 특성에 관한 연구)

  • Beck, Youngseog;Sohn, Jinsik
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.176-183
    • /
    • 2005
  • Chlorination of wastewater is recently practiced in Korea. While many researchers have studied the kinetics of aqueous chlorine(HOCl) with nitrogeneous compounds and other organic/inorganic contaminants in drinking water, the researches of wastewater chlorination are relatively few. The purpose of this study was to investigate the chlorine decay kinetics and parameters on wastewater chlorination. Chlorine decay rate increased with increasing initial chlorine concentration. The parameters affecting chlorine decay rate were different in each wastewater treatment plant. One of the most important parameters affecting chlorine decay was initial chlorine concentration, and other parameters such as $NH_3-N$, total coliform, $UV_{254}$ and Fe were also affected. The decay ratio of chlorine was decreased with increasing initial chlorine concentration, and the disinfection efficiency showed good correlation with the decay ratio.

Characterization of NOM Behavior and DBPs Formation in Water Treatment Processes (정수처리공정에서 NOM 거동과 소독부산물 발생특성)

  • Kim, Sang Eun;Gu, Yeun Hee;Yu, Myong Jin;Chang, Hyun Seong;Lee, Su Won;Han, Sun Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.395-407
    • /
    • 2007
  • Disinfection by-products(DBPs) are formed through the reaction between chlorine and natural organic matter(NOM) in water treatment. For reducing the formation of chlorinated DBPs in the drinking water treatment, there is a need to evaluate the behavior of NOM fractions and the occurrence of DBPs for each fraction. Among the six fractions of NOM, the removal of HPOA and HPIN got accomplished through coagulation and sedimentation processes. Advanced water treatment processes were found to be most significant to remove the HPOA and HPON. It was found that HPOA made the most THMFP level than any other fractions and HPIA and HPOA formed higher HAAFP. The fraction of NOM with MW less than 1k Da was 32.5~54.3% in intake raw water. Mostly the organic matter with MW more than 1k Da was removed through coagulation and sedimentation in the drinking water treatment processes. In case of advanced water treatment processes, the organic matter with MW 1k~100k Da decreased by means of ozone oxidation for high molecular weight substances. As the result low molecular organic matter increased. In the BAC and GAC processes, the organic matter with MW less than 100k Da decreased.

Variations of Disinfection By-products in a Chlorinated Drinking Water Distribution System

  • Lee, Soo-Hyung;Park, Jeong-Kun;Lee, Hyung-Jun;Kim, He-Kap
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.2
    • /
    • pp.71-78
    • /
    • 2000
  • The chlorination of municipal drinking water supplies leads to the formation of so-called disinfection by-products(DBPs), many of which have been reported to cause harmful health effects based on animal studies. This study was conducted: 1) to observe seasonal changes in the major DBPs at four sampling sites on a drinking water distribution system located in Chunchon, Kangwon Do; and 2) to examine the effects of major water quality parameters on the formation of DBPs. During the field sampling, the water temperature, pH, and total and free chlorine residuals were all measured. The water samples were then analyzed for total organic carbon(TOC) and eight disinfection by-products in the laboratory. Chloroform, dichloroacetic acid, and trichloroacetic acid were the major constituents of the measured DBPs. The concentrations of the total DBPs were highest in fall, particularly in October, and lowest in summer. The concentrations of the total DBPs increased with increasing TOC concentrations. Multiple regression analyses showed that the concentrations of chloroform, bromodichloromethane, and chloral hydrate were linearly correlated with the pH. Other water parameters were not included in the regression equations. Accordingly, these results suggest that TOC and pH are both important factors in the formation of DBPs.

  • PDF

Assessment of Volatile Organic Compounds in Blood and Urine among Residents around Camp Carroll (캠프 캐럴 인근 주민의 혈중 및 요중 휘발성 유기화합물 평가)

  • Lim, Hyun-Sul;Yang, Wonho;Kim, Geun-Bae;Cho, Young-Sung;Min, Young-Sun;Lee, Kwan;Lee, Duk Hee;Ju, Young-Su;Kim, Sunshin;Heo, Jung;Jung, Dayoung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2016
  • Objectives: Exposure to volatile organic compounds such as trichloroethylene(TCE) and perchloroethylene(PCE), along with Agent Orange, that were issued around Camp Carroll US Army Base situated in Waegwan, Chilgok-gun, Gyeongsangbuk-do Province, Korea. The main objective of this study was to assess the exposure to TCE and PCE of residents of the area surrounding Camp Carroll. Methods: The TCE, PCE and trichloroethanol(TCEOH) concentrations in blood and trichlroroacetic acid(TCA) and TCEOH concentrations in urine were measured and analyzed in a total of 1,033 residents around Camp Carroll. TCA and TCEOH are metabolites of TCE and PCE, respectively. The information on demographic characteristics and exposure variables in relation to underground water were obtained through a questionnaire completed by the subjects. Results: TCE, PCE and TCEOH concentrations were not detected in blood. Detection rates of TCA and TECOH concentrations in urine were 98.5% and 36.6%, respectively. Creatinine-corrected average TCA and TCEOH concentrations were $12.23{\pm}23.81{\mu}g/g$ and $0.66{\pm}4.31{\mu}g/g$, respectively. A significant difference was not shown between the drinking group and no drinking group for underground water, which was assumed as a potential route of exposure to TCE and PCE through the consumption of ground water. However, females drinking ground water showed a significantly higher mean level of TCA in urine than did males. There was no significant difference according to drinking ground water as a potential source of exposure to TCE and PCE in residents around Camp Carroll. Conclusions: Considering the statistical analysis of factors affecting exposure to TCE and PCE in ground water along with previous reports, TCA in urine as exposure to TCE and PCE might not be appropriate because it is found in chlorinated drinking water. Therefore, TCA concentration in urine may be the result of drinking of chlorinated water.

Removal of Some Metals in Drinking Water by Preparing Barley or Corn Tea (보리차 및 옥수수차 제조에 따른 음용수 중 일부 금속들의 제거)

  • 이수형;박송자;김희갑
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • Barley or corn tea, which is usually prepared with municipal chlorinated tap water, is commonly consumed by the public as a substitute for the supplied water itself. This is because most people believe that harmful organic and inorganic compounds can be removed from the tap water by the adsorption mechanism during the tea preparation. In this study, three kinds of commercial grain tea materials-roasted barley grains, a tea bag containing barley grain pieces, and roasted corn grains-were tested for metal removal by preparing 1 liter of tea with deionized/distilled water according the manufacturer's recommended preparation procedures, assuming that the water is contaminated with eight selected metals at levels of 50$\mu\textrm{g}$/l. Of the tested teas, barley tea prepared with roasted grains showed the highest removal efficiency for Cu, As, Ni, Co, Pb, and Cd, ranging from 48 to 71%, followed by corn tea with roasted grains and barley tea with a tea bag. Cr was nearly maintained at the initial concentration in all kinds of tea. The Mn levels. however, were elevated during the tea preparation, particularly in both barley teas, probably because the metal was extracted into the water from the tea materials without significant adsorption. Therefore, it should be considered in the ingestion exposure analysis for metals that their concentrations are altered during the tea preparation with roasted barley or corn grain materials.

  • PDF

Characterization of Disinfection By-Products by Chlamydomonas pulsatilla (녹조류(Chlamydomonas pulsatilla)에 의한 염소소독부산물 생성과 그 특성)

  • Kum, Heejung;Kim, Junsung;Chung, Yong
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.5
    • /
    • pp.535-540
    • /
    • 2005
  • This study was conducted to evaluate the chlorinated disinfection by-products formation potential (DBPFP) produced from the cell and extracellular product (ECP) of Chlamydomonas pulsatilla after chlorination. Reaction yields of DBPs produced by C. pulsatilla of ECP and the cell were $0.007{\mu}mol/mg{\cdot}C$ and $0.808{\mu}mol/mg{\cdot}C$ respectively, Also, SUVA values of ECP and the cell were measured as $0.313L/mg{\cdot}m$ and $1.052L/mg{\cdot}m$ respectively, The DOC of cell was found to be lower than that of ECP, while the SUVA value and reaction yields for the cell were higher than those of ECP. For ECP, most of the DBPFP was composed of trihalomethanes (THM; 47.3%) and haloacetonitriles (HAN; 38,83%). THM and HAN were the major DBPFP produced by the cell. Chloroform was found to be the major THM compound; 98.3% for ECP and 99.98% for the cell. Dichloroacetic acid (DCAA) and dichloroacetonitrile (DCAN) were identified as the major haloacetic acid (HAA) and HAN compounds formed by ECP and the cell as a precursor, respectively. As the chlorine dose was increased, concentrations of DOC, THMs, and HANs were increased. However, the chlorine dose decreased the concentration of chlorophyll-a.