• Title/Summary/Keyword: Chloride-ion penetration resistance

Search Result 146, Processing Time 0.026 seconds

An Experimental Study for Effect Organic/Inorganic Hybrid based Durability Promoting Agent(DPA) on the Properites of concrete (유무기 복합형 내구성개선제가 콘크리트 물성에 미치는 효과에 대한 실험적 연구)

  • Kim, Do-Su;Khil, Bae-Su;Kim, Woo-Jae;Kim, Sung-Su;Jeong, Yong;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.801-804
    • /
    • 2008
  • Performance for the resistant to chlorides penetration is required in order to increase durability of seaside construction. For this reason, it is important to acquire simultaneously watertightness, resistance for crack of concrete and chemical fixation effect of chloride in it. In this study, High durability promoting agents(HD) consist of inorganic salt and active components were applied to enhancing resistance for chloride ion penetration against concrete based on mix(composition of binder : OPC+SLG) of seaside construction. Tang's experimental method was utilized to investigate the resistances of chloride ion penetration of concrete such as chloride ion diffusion coefficient and penetration depth. It was confirmed that resistance of chloride ion penetration of concrete by 0.6% addition of HD was improved to $11.3^{\sim}20.5$% than non-added concrete.

  • PDF

Characteristics of Chloride Penetration in Cracked Flexural Member using Durable Materials (고내구성 재료를 사용한 휨부재의 균열에 따른 염화물 침투 특성)

  • Jin, Sang-Ho;Kim, Il-Sun;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.401-404
    • /
    • 2008
  • Crack is a penetration path of harmful material such as chloride ion, and causes a serious deterioration in durability. So, the characteristics of chloride penetration are investigated for the cracked flexural concrete members using high-durable materials. For these, the flexural crack of beam specimen is introduced by transverse loading. And, Rapid Chloride Penetration Test (RCPT) and Long-term chloride penetration test are carried out to compare the chloride penetration depth. From test results when crack is happened, the chloride penetration resistance of the durable member was superior than that of the normal member. Blast furnace slag concrete member has a excellent chloride penetration resistance in long-term chloride penetration test.

  • PDF

The study on Response of the Sensor for monitoring of Chloride Penetration in Concrete (콘크리트내 비래 염소이온 침투 모니터링을 위한 부식센서의 응답성능 평가에 관한 연구)

  • Shin, Sang-Heon;Lee, Hyun-Seok;Ryu, Hwa-Sung;Kim, Bo-Seok;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.172-173
    • /
    • 2014
  • The study is used to verify the applicability of the sensor to monitor penetration of chloride into the concrete, like real coastal environment. After manufacturing the specimen adapt corrosion sensor for chloride penetration monitoring, chloride spray experiment was conducted. And then, It was checked the possibility of monitoring of the penetrated chloride by measuring the resistance of the corrosion sensor that was embedded in each depth of the concrete. Experimental results, it is confirmed that the corrosion resistance of the sensor was increased depending on the concentration of chloride. Therefore, it is estimated that the sensor is available for monitoring of chloride penetration.

  • PDF

A Study on the Chloride ion Penetration Characteristic of Concrete containing Ground Granulated Blast Furnace Slag (고로슬래그미분말 치환 콘크리트의 염화물 침투특성에 관한 연구)

  • 김현수;지남용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.997-1002
    • /
    • 2001
  • There are two types of chloride in concrete; one is added as concrete materials' chloride when concrete's mixing, and .the other is penetrated from the air and sea water in the sea-shore area. These chlorides penetrate into concrete, and they are accumulated inside the concrete with aging. This study aimed to evaluate the chloride ion penetration resistance of concrete containing GGBFS in the sea-shore area. Therefore, the specimens made with the replacement ratios(0, 0.30, 0.45, 0.60) of GGBFS were put into 3% NaCl solution according to the chloride accelerating test of JCI-SC3, and then investigated the weight changes, compressive strength, chloride ion with the depths of the specimens by aging. The result is that the diffusion coefficient of chloride ion is decreased with the increase of replacement ratios when compared to OPC

  • PDF

Effect of Concrete Coating Materials for the Improvement of Concrete Durability (콘크리트 표면도장에 의한 내구성증진 효과)

  • 문한영;김성수;안태송;김홍삼
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.433-436
    • /
    • 1999
  • Long-term durability of the reinforced concrete structures exposed to marine environment deteriorates seriously by the attack of the chloride ion from see water results in corrosion of steel reinforcement in concrete. Their coating effect is aluminum oxide-isocyanate-based coating material, resistance of chloride penetration, carbonation and freezing and thawing resistance were compared to acryl-based coating material and sealer type o waterproofing material. Aluminum oxide-isocyante-based and acryl-based coating material show higher resistance to chloride penetration and carbonation than the sealer type do waterproofing material and aluminum oxide-isocyanate-based coating resist about 99% of chloride penetration. Resultants to the accelerated test for freezing and thawing, coating concrete show higher resistance than non-coating concrete, respectively.

  • PDF

The Chloride Ion Diffusion Characteristics of High Performance Lightweight Concrete Using Metakaolin (메타카올린을 사용한 고성능 경량 콘크리트의 염소이온 확산 특성)

  • Lee, Changsoo;Kim, Youngook;Nam, Changsik
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.1
    • /
    • pp.21-31
    • /
    • 2011
  • The objectives of this study is replaced Silicafume with Metakaolin that is used to lightweight concrete to better performance. So, this study made high-performance lightweight concrete using Metakaolin and characteristics of the fundamental properties and chloride ion diffusion. Consequently, it is compressive strength and chloride ion penetration resistance is lower than lightweight concrete using Silicafume, the performance of compressive strength contrast Silicafume is about 88 to 95%. Also, this study got a content result because the chloride ion penetration resistance showed the performance in around 80 to 90%. As a result, this study insist that replacement ratio of Metakaolin is suitable for 10 to 15%.Silicafume and Metakaolin have similar characteristics. In addition, it is similar to the performance of alternative materials is possible.

Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure (해양환경 폭로에 의한 슬래그 치환 콘크리트 및 슬래그 콘크리트의 염화물 이온 침투 저항성)

  • Lee, Bo-Kyeong;Kim, Gyu-Yong;Kim, Gyeong-Tae;Shin, Kyoung-Su;Nam, Jeong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.299-306
    • /
    • 2017
  • In this research, it was examined chloride ion penetration resistance of slag-replaced concrete and cementless slag concrete considering marine environmental exposure conditions of splash zone, tidal zone and immersion zone. In the design strength of grade 24 MPa, the specimens were tested to determine their compressive strength, scanning electron microscopy images and chloride migration coefficient. Further, chloride ion penetration depth and carbonation depth of specimens exposed to marine environment were measured. Experimental results confirm that chloride migration coefficient of specimens tended to decrease with increasing the replacement ratio of ground granulated blast-furnace slag in accelerated laboratory test. In addition, the specimens exposed to the tidal zone were found to be the greatest chloride ion penetration depth compared to splash zone and immersion zone. On the other hand, the chloride ion penetration depth of the specimens exposed to splash zone tended to increase with increasing the replacement ratio of ground granulated blast-furnace slag in contrast with the results for the tidal zone and immersion zone.

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • Yoo, Jae-Kang;Kim, Dong-Seuk;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.11a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3~4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

Experimental Study on the Chloride Invasion Resistance Properties of Concrete Containing Mineral Admixtures (혼화재 혼입 콘크리트의 염화물 침투저항성에 관한 실험적 연구)

  • 유재강;김동석;이상수
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2003.05a
    • /
    • pp.43-48
    • /
    • 2003
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzaolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for 3∼4 replacement ratios under W/B ratios ranged from 0.40 to 0.55. For the electrical migration test, Tang and Nilsson's method was used to estimate the migration coefficient of chloride ion. As a results, the W/B ratios, kinds of admixture and replacement ratios, water curing periods had a great effect on the migration coefficient of chloride ion, and the optimal replacement ratios of admixture had a limitation for each admixtures. Also, the addition of mineral admixtures by mass(replacement of OPC) enhanced the resistance of the mixture to chloride penetration compared with the plain concrete. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures. The compressive strength was shown related to the migration coefficient of chloride ion, the compressive strength increased with the decreasing migration coefficient of chloride ion. Below the 50MPa, the variation of migration coefficient of concrete added mineral admixtures was bigger than plain concrete.

  • PDF

Compressive Strength and Chloride Ion Penetration Resistance of SHCC Coated by PDMS-based Penetrating Water Repellency (PDMS 흡수방지재를 적용한 SHCC의 압축강도 및 염화물이온 침투저항성)

  • Lee, Jun-Hee;Hyun, Jung-Hwan;Park, Su-Hyun;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.16-23
    • /
    • 2018
  • In this study, Polydimethylsiloxane (PDMS) was applied to Strain Hardening Cement Composites (SHCC) for penetrating water repellency. The penetration depth of PDMS, strength of SHCC, and chloride ion penetration resistance of SHCC were investigated. As a result of measuring penetration depth of PDMS when applying different application method, it was confirmed that all methods satisfied the requirements of KS F 4930. Although the immersion method showed the largest penetration depth, the spray method was considered to be more appropriate considering the ease of field application. Compressive strength tests showed that the penetration depth of PDMS decreased as the compressive strength of SHCC increased. The compressive strength of M4-A and M4-B specimens with large PDMS penetration depths decreased by 9.6% and 8.0%, respectively, compared with those of M4 specimens produced without PDMS. Compressive strengths of the M1-A and M1-B specimens with small PDMS penetration depths were reduced by 4% and 2.2%, respectively, compared with the M1 specimen. As a result, it can be seen that the strength reduction rate of SHCC increases as the penetration depth of PDMS increases. The chlorine ion penetration tests showed that the chlorine ion penetration resistance increases with the penetration depth of PDMS.