• Title/Summary/Keyword: Chloride attack

Search Result 317, Processing Time 0.028 seconds

Remaining service life estimation of reinforced concrete buildings based on fuzzy approach

  • Cho, Hae-Chang;Lee, Deuck Hang;Ju, Hyunjin;Kim, Kang Su;Kim, Ki-Hyun;Monteiro, Paulo J.M.
    • Computers and Concrete
    • /
    • v.15 no.6
    • /
    • pp.879-902
    • /
    • 2015
  • The remaining service life (RSL) of buildings has been an important issue in the field of building and facility management, and its development is also one of the essential factors for achieving sustainable infrastructure. Since the estimation of RSL of buildings is heavily affected by the subjectivity of individual inspector or engineer, much effort has been placed in the development of a rational method that can estimate the RSL of existing buildings more quantitatively using objective measurement indices. Various uncertain factors contribute to the deterioration of the structural performance of buildings, and most of the common building structures are constructed not with a single structural member but with various types of structural components (e.g., beams, slabs, and columns) in multistory floors. Most existing RSL estimation methods, however, consider only an individual factor. In this study, an estimation method for RSL of concrete buildings is presented by utilizing a fuzzy theory to consider the effects of multiple influencing factors on the deterioration of durability (e.g., concrete carbonation, chloride attack, sulfate attack), as well as the current structural condition (or damage level) of buildings.

A Study on the Resistance to Seawater Attack of Mortars and Concretes Incorporating Limestone Powder (석회석미분말을 혼입한 모르타르 및 콘크리트의 내해수성 연구)

  • Lee, Seung Tae;Jung, Ho Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.129-137
    • /
    • 2011
  • This study aims to evaluate the resistance to seawater attack of mortars and concretes incorporating limestone powder (0, 10, 20 and 30% of cement by mass). In order to achieve this goal, both chemical resistance by seawater and chloride ions penetration resistance of mortars or concretes were regularly monitored. From the test results, it was observed that the durability of cement matrix was greatly dependent on the replacement ratios of limestone powder. In other words, performance of cement matrix with 10% limestone powder was similar to that of OPC matrix. However, it was found that a high replacement ratio of limestone powder was ineffective to resist seawater attack.

The Analysis of Chloride Penetration at Concrete and Repair Material under Tidal and Splash Zone (조간대와 비말대의 콘크리트와 보수재의 염분침투 특성분석)

  • Lee, Joon-Gu;Cho, Young-Kwoun;Kim, Meyong-Won;Kim, Kwan-Ho;Joo, Jae-Hong;Kim, Han-Joung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.207-208
    • /
    • 2010
  • The building that supply tidal and splash zone was constructed near Seamangeum Gate Bridge. The specimens that will be tested for maintenance of gate bridge were exposed on the tidal and splash zone, totally about 650. The characteristics of strength, salt penetration profile, field application of surface repair material and section recover material will be acquired by periodical test. The program was developed to obtain optimal maintenance strategy of gate bridge as a marine concrete structure and to deposit experimental data, lab. test result, field test result, on its D/B. On this paper, the comparison of concrete and recover material in the salt penetration characteristics was expressed. The quantitative analysis of salt contents in concrete surface was most important so the improvement for the machine of gathering power of concrete and the apparatus of measuring chloride contents was proceeded at this time. The two conclusions were summarized like as - The resistance of chloride attack of concrete was appeared 2.5 times bigger than that of recover material - The resistance of chloride attack of polymer series was appeared more higher than that of others.

  • PDF

Service life prediction of a reinforced concrete bridge exposed to chloride induced deterioration

  • Papadakis, Vagelis G.
    • Advances in concrete construction
    • /
    • v.1 no.3
    • /
    • pp.201-213
    • /
    • 2013
  • While recognizing the problem of reinforcement corrosion and premature structural deterioration of reinforced concrete (RC) structures as a combined effect of mechanical and environmental actions (carbonation, ingress of chlorides), emphasis is given on the effect of the latter, as most severe and unpredictable action. In this study, a simulation tool, based on proven predictive models utilizing principles of chemical and material engineering, for the estimation of concrete service life is applied on an existing reinforced concrete bridge (${\O}$resund Link) located in a chloride environment. After a brief introduction to the structure of the models used, emphasis is given on the physicochemical processes in concrete leading to chloride induced corrosion of the embedded reinforcement. By taking under consideration the concrete, structural and environmental properties of the bridge investigated, an accurate prediction of its service life is taking place. It was observed that the proposed, and already used, relationship of service lifetime- cover is almost identical with a mean line between the lines derived from the minimum and maximum critical values considered for corrosion initiation. Thus, an excellent agreement with the project specifications is observed despite the different ways used to approach the problem. Furthermore, different scenarios of concrete cover failure, in the case when a coating is utilized, and extreme deicing salts attack are also investigated.

Analysis on Changes in Strength, Chloride Diffusion, and Passed Charges in Normal Concrete Considering Ages and Mix Proportions (재령 및 배합특성을 고려한 보통 콘크리트의 강도, 염화물 확산계수, 통과전하량 변화 분석)

  • Lee, Hack-Soo;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Concrete behavior in early-age is changing due to hydration reaction with time, and a resistance to chloride attack and strength development are different characterized. In the present work, changing strength and resistance to chloride attack are evaluated with ages from 28 days to 6 months. For the purpose, strength, diffusion coefficient, and passed charge are evaluated for normal concrete with 3 different mix proportions considering 28-day and 6-month curing conditions. With increasing concrete age, the changing ratio of strength falls on the level of 135.3~138.3%, while diffusion coefficient and passed charge shows 41.8%~51.1% and 53.6%~70.0%, respectively. The results of chloride diffusion coefficient and passed charge show relatively similar changing ratios since they are much dependent on the chloride migration velocity in electrical field. The changing ratios in chloride behaviors are evaluated to be much larger than those in compressive strength since the ion transport mechanism is proportional to not porosity but square of porosity.

Estimation of Optimum Maintenance Cycle for the Chloride Damaged RC Structure (염해를 입은 RC 구조물의 최적 보수주기 산정 기법에 관한 연구)

  • Yun, Sun-Young;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05a
    • /
    • pp.235-236
    • /
    • 2010
  • Since many structures in the sea environment are damaged by chloride, appropriate repair strategy is required. Therefore in the paper, optimum period for the RC structure's repair is calculated with consideration of economic efficiency. Moreover, when the concrete members are repaired with the other material such as polymer mortar forr section restoration, their expected service life also calculated to predict more accurate repair period during the life span.

  • PDF

Service-Life Prediction of Reinforced Concrete Structures under Corrosive Environment

  • Shimomura, Takumi
    • Corrosion Science and Technology
    • /
    • v.4 no.5
    • /
    • pp.171-177
    • /
    • 2005
  • A comprehensive framework for numerical simulation of time-dependent performance change of reinforced concrete (RC) structures subjected to chloride attack is presented in this paper. The system is composed of simplified computational models for transport of moisture and chloride ions in concrete pore structure and crack, corrosion of reinforcement in concrete and mechanical behavior of RC member with reinforcement corrosion. Service-life of RC structures under various conditions is calculated.

The Development of Life Evaluation Program for LNG Storage Tank considering Fatigue and Durability (피로 및 내구성을 고려한 LNG 저장탱크의 수명평가 프로그램 개발)

  • Kim, Jung-Hoon;Kim, Young-Gu;Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.39-45
    • /
    • 2017
  • The LNG storage tank as core facility of LNG industry is mainly composed of the inner tank of nikel 9% steel and the outer tank of prestressed concrete. To respond proactively increased risk of structure performance deterioration due to fatigue of the inner tank and durability reduction of the outer tank, life evaluation program for LNG storage tank is needed. In this study, life evaluation program for LNG storage tank was developed to assess fatigue of the inner tank and durability(carbonation and chloride attack) of the outer tank. By defining the main three scenarios in the inner tank, the fatigue life analysis is conducted from structural analysis and Miner's damage rule. Carbonation progress of the outer tank is predicted according to thickness of cover concrete by using carbon dioxide contents and data of penetration depth. To consider a variety of input conditions and a reliability in results of chloride attack, the evaluation of choride attack for the outer tank is constructed through Life-365 program of open source.

Seasonal properties of airborne chlorides to the result of 3 year-measurement (3년간의 측정결과에 따른 비래염분의 계절별 특성)

  • Lee, Jong-Suk;Ahn, Ki-Hong;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.573-576
    • /
    • 2008
  • When the concrete structures are in contact with seawater, concentration of chloride for estimating chloride diffusion coefficient can be defined as the chloride concentration of sea water. However, in case the concrete structures, constructed in the seashore, aren't directly in contact with seawater, it is difficult to establish the interface concentration of chloride. In addition, marine concrete structures are greatly affected by salt attack such as rebar corrosion, among the cause of salt attack, airborne chlorides is primary factor. Therefore, in this study, salt attack environment by airborne chlorides was investigated in terms of a seasonal distribution at 72 spots, 27 areas in the East, West, South coast for 3 years from July '03 to June '06. Results indicated that in the East and South coast, the amount of the airborne chlorides is comparatively higher in summer, in the West coast, higher in winter according to the seasonal wind.

  • PDF

Durability Evaluation of Inorganic-Impregnated Concrete Exposed to Long-Term Chloride Exposure Test (무기계 침투제를 적용한 콘크리트의 장기폭로실험을 통한 염해 내구성 평가)

  • Kwon, Seung-Jun;Park, Sang-Soon;Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.283-290
    • /
    • 2008
  • The repair technique using surface impregnation of reactive compound is so effective for deteriorated concrete structures that many researches are recently focused on these works. Particularly, inorganic impregnant is regarded as ecofriendly material because there is no air-pollution during manufacturing process as well as field coating works. Furthermore, The delamination between old concrete and impregnated surface does not occur, resulting from different material characteristics. In order to evaluate the durability performance of surface-impregnated concrete, durability evaluation through the long-term exposure tests is significant, however, experiments are usually limited to the temporary and qualitative laboratorial scope. In this study, durability characteristics for inorganic and organic/inorganic impregnated concrete specimens are evaluated through longterm chloride exposure test. The specimens with 21MPa and 34MPa strength have been prepared and exposed to chloride attack in the atmospheric, tidal, and submerged conditions. Evaluation for compressive strength, chloride penetration, and electrical potential (half cell potential) for steel corrosion are performed for the specimens exposed for 2 years. From the results, no distinct strength gaining is observed but the resistance to chloride penetration and steel corrosion is evaluated to be improved through surface impregnation. The more improved resistance to chloride attack is measured in the inorganic impregnated concrete and the results from atmospheric condition show more improved resistance to chloride attack than those from submerged and tidal condition.