• Title/Summary/Keyword: Chloride attack

Search Result 318, Processing Time 0.025 seconds

Strength and Resistance to Chloride Penetration in Concrete Containing GGBFS with Ages (GGBFS를 혼입한 콘크리트의 재령에 따른 강도 및 염소이온 침투 저항성)

  • Park, Jae-Sung;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.307-314
    • /
    • 2017
  • Concrete is a durable and cost-benefit construction material, however performance degradation occurs due to steel corrosion exposed to chloride attack. Penetration of chloride ion usually decreases due to hydrates formation and reduction of pores, and the reduced chloride behavior is considered through decreasing diffusion coefficient with time. In the work, HPC (High Performance Concrete) samples are prepared with 3 levels of W/B (water to binder) ratios of 0.37, 0.42, and 0.27 and 3 levels of replacement ratios of 0%, 30% and 50%. Several tests containing chloride diffusion coefficient, passed charge, and compressive strength are performed considering age effect of 28 days and 180 days. Chloride diffusion is more reduced in OPC concrete with lower W/B ratio and GGBFS concrete with 50% replacement ratio shows significant reduction of chloride diffusion in higher W/B ratio. At the age of 28 days, GGBFS concrete with 50% replacement ratio shows more rapid reduction of chloride diffusion than strength development, which reveals that abundant GGBFS replacement has effective resistance to chloride penetration even in the early-aged condition.

Chloride Penetration Resistance of Ternary Blended Concrete and Discussion for Durability (삼성분계 혼합콘크리트의 염화물 침투 저항성 및 내구성에 대한 고찰)

  • Song, Ha-Won;Lee, Chang-Hong;Lee, Kewn-Chu;Kim, Jae-Hwan;Ann, Ki-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.439-449
    • /
    • 2008
  • Mineral admixtures are used to improve the quality of concrete and to develop sustainability of concrete structures. Supplementary cementitious materials (SCM), such as silica fume (SF), granulated blast furnace slag (GGBS) and pulverized fly ash (PFA), are gradually recognized as useful mineral admixture for producing high performance concrete. The study on ternary blended concrete utilizing mainly three major mineral admixtures is limited and the study on durability and chloride induced corrosion resistance of ternary blended concrete is very few. This study examines the durability characteristics of the ternary blended concrete composed of different amount of the SCM with ordinary Portland concrete and the study experimentally focuses on corrosion resistance evaluation of ternary blended concrete subjected to chloride attack. In this study, 50% replacement ratio of mineral admixture to OPC was used, while series of combination of $20{\sim}40%$ GGBS, $5{\sim}15%$ SF and $10{\sim}45%$ PFA binder were used for chloride corrosion resistance test. This study concerned the durability properties of the ternary blended concrete including the corrosion resistance, chloride binding, chloride transport and acid neutralization capacity. It was found that the ternary blended concrete utilizing the SCM densified the pore structures to lower the rate of chloride transport. Also, increased chloride binding and buffering to acid were observed for the ternary blended concrete with chlorides in cast.

CO2 Evaluation of Reinforced Concrete Column Exposed to Chloride Attack Considering Repair Timing (보수시기를 고려한 염해에 노출된 콘크리트 교각의 탄소량 평가)

  • Kim, Seong-Jun;Kim, Young-Joon;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • In this paper, $CO_2$ amount is evaluated considering repairing timing and unit $CO_2$ amount per repair method including various stage of material manufacturing, moving, and construction. Four mix proportions with mineral admixture are considered and repairing timing/numbers are simulated based on the results from Life 365 which can handle chloride penetration. Furthermore two repair methods (simple cover concrete replacement and replacement with electro-chemical method for removing chloride content) are considered and the related $CO_2$ emissions are evaluated. From the study, the case with high W/B (water to binder ratio) ratio shows smaller $CO_2$ emission in construction stage but it increases more rapidly with increasing number of repair. $CO_2$ emission considering electro-chemical method greatly increases with the increasing unit $CO_2$ for the repairing method. The numbers of jumping step (repairing number) are evaluated to be 9 for WB37-OPC, 18 for WB50-OPC, 4 for WB40-SG, and 7 for WB47-SG respectively. RC structures with the longer maintenance free period are evaluated to be advantageous for saving $CO_2$ emission.

Study on Optimum Mixture Design for Service Life of RC Structure subjected to Chloride Attack - Genetic Algorithm Application (염해에 노출된 콘크리트의 내구수명 확보를 위한 최적 배합 도출에 대한 연구 - 유전자 알고리즘의 적용)

  • Kwon, Seung-Jun;Lee, Sung Chil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.433-442
    • /
    • 2010
  • A control of chloride diffusion coefficient is very essential for service life of reinforced concrete (RC) structures exposed to chloride attack so that much studies have been focused on this work. The purpose of this study is to derive the intended diffusion coefficient which satisfies intended service life and propose a technique for optimum concrete mixture through genetic algorithm(GA). For this study, 30 data with mixture proportions and related diffusion coefficients are analyzed. Utilizing 27 data, fitness function for diffusion coefficient is obtained with variables of water to binder ratio(W/B), weight of cement, mineral admixture(slag, flay ash, and silica fume), sand, and coarse aggregate. 3 data are used for verification of the results from GA. Average error from fitness function is observed to 18.7% for 27 data for diffusion coefficient with 16.0% of coefficient of variance. For the verification using 3 data, a range of error for mixture proportions through GA is evaluated to 0.3~9.3% in 3 given diffusion coefficients. Assuming the durability design parameters like intended service life, cover depth, surface chloride content, and replacement ratio of mineral admixture, target diffusion coefficient, where exterior conditions like relative humidity(R.H.) and temperature, is derived and optimum design mixtures for concrete are proposed. In this paper, applicability of GA is attempted for durability mixture design and the proposed technique would be improved with enhancement of comprehensive data set including wider range of diffusion coefficients.

Evaluation of Apparent Chloride Diffusion Coefficient of Fly Ash Concrete by Marine Environment Exposure Tests (해양 환경 폭로 시험을 통한 FA 콘크리트의 겉보기 염화물 확산계수 평가)

  • Yoon, Yong-Sik;Lim, Hee-Seob;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.119-126
    • /
    • 2019
  • In case of RC(Reinforced Concrete) structures which are constructed in coastal areas, chloride ions in sea water corrode the steel rebar in concrete. Especially in coastal areas, RC structures are affected by not only immersion of sea water, but also tidal of sea water and airborne chloride ions. In this study, marine environment exposure tests are conducted, considering 3 types of exposure environments(immersion zone, tidal zone, splash zone) and the exposure periods of 180 days, 365 days, and 730 days. Also, the concrete mixtures for this study are established, considering 3 levels of W/B(Water to Binder) ratio(0.37, 0.42, 0.47) and 2 levels of substitution rate of Fly ash(0 %, 30 %). In all exposure environments, Fly ash concrete has lower apparent chloride diffusion coefficients than OPC concrete. It is thought that fly ash's pozzolan reaction improves chloride resistance of concrete. Fly ash concrete has up to 63.5 % of decreasing rate in 180 days of exposure and up to 55.8 % of decreasing rate in 730 days of exposure, based on diffusion coefficients of OPC concrete. As a result of evaluation about effects of exposure environments, apparent chloride diffusion coefficients of fly ash concrete are evaluated in order of tidal zone, immersion zone, and splash zone. In tidal zone, It is thought that repeated cycles of wetting and drying of sea water cause the diffusion of chloride ions rapidly.

Analysis of Correlation between Freeze-Thaw Damage on Concrete and Chloride Penetration Acceleration Effect Using Surface Rebound Value (표면반발경도 활용 콘크리트 동해손상과 염분 침투 가속효과의 상관관계 분석)

  • Park, Ji-Sun;Lee, Jong-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.148-156
    • /
    • 2022
  • Although most domestic concrete structures are simultaneously exposed to freeze-thaw and chloride environments, concrete durability in the field is evaluated by each single action, and the evaluation of chloride-caused damage of concrete requires additional indoor experimental analysis of chloride contents by coring samples from structures in the field. However, in Korea, policies to strengthen facility maintenance, such as 「Special Act on the Safety Control and Maintenance of Establishments」 and 「Framework Act on Sustainable Infrastructure Management」, have been established and implemented since 2018 and facilities subject to safety inspection management by the government and local governments increases, the effective simplification technology for the inspection and diagnosis of concrete structure is needed. Therefore, this study attempted to evaluate the possibility of determining the acceleration chloride penetration of freeze-thaw damaged concrete by using the surface rebound value. For this purpose, concrete specimens already having freeze-thaw damage by exposure to the freeze-thaw acceleration environment were immersed in chloride water. After that, the acceleration relationship of chloride penetration according to freeze-thaw damage was analyzed using the amount of chloride contents in concrete.

Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측)

  • Jung, Hyun-Jun;Zi, Goang-Seup;Kong, Jung-Sik;Kang, Jin-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

Acid Corrosion Resistance and Durability of Alkali-Activated Fly Ash Cement-Concrete (알칼리활성 플라이 애쉬 시멘트-콘크리트의 산저항성 및 내구성)

  • Kang, Hwa-Young;Park, Sang-Sook;Han, Sang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.61-68
    • /
    • 2008
  • A new cementitious material has been developed, called alkali-activated fly ash cement(AAFC), which is used to produce AAFC-concrete for construction. The effect of acid attack, sodium chloride solution, carbonation, freeze-thaw cycling, and SEM, XRD analysis of the AAFC-concrete prepared using alkali-activated fly ash cement and OPC-concrete were experimentally investigated. It was found that the acid resistance of AAFC-concrete(35 MPa) prepared from alkali-activated fly ash at 85$^{\circ}C$ for 24 hrs is far better than OPC-concrete(35 MPa). Also, the AAFC-concrete(35 MPa) had a similar resistance of OPC-concrete(35 MPa) to attack, such as sodium chloride solution, carbonation and freeze-thaw cycling.

Long-term Durability Characteristics of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 장기재령에서의 내구특성)

  • Jang, Bong-Seok;Choi, Seul-Woo;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.909-916
    • /
    • 2013
  • Concrete containing lightly burnt MgO has long term expansibility. It also could compensate for the thermal shrinkage of mass concrete, because the hydration of MgO proceeds at a slow pace to long-term age. Thus, lightly burnt MgO has been applied to the construction of mass concrete such as dams. Recently, the expansion characteristics of MgO concrete with fly ash that could be applied to mass concrete for the reduction of hydration heat have been studied and however, limited studies on its durability. This study investigates the long-term durability characteristics of fly ash concrete with lightly burnt MgO. The durability tests on carbonation, freezing-thawing, diffusion of chloride, and resistance to sulfate attack were carried out for MgO concrete with curing for 360 days in submerged condition with different temperature of 20 and $50^{\circ}C$. The results reveal that MgO concrete shows a greater resistance of carbonation, diffusion of chloride, and resistance to sulfate attack. On the other hand the resistance of freezing-thawing was little influenced by MgO powder.

Influence of Microstructure on Corrosion Property of Mg-Al-Zn Alloy

  • Lee, Jeong Ja;Na, Seung Chan;Yang, Won Seog;Jang, Si Sung;Yoo, Hwang Ryong;Hwang, Woon Suk
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.218-221
    • /
    • 2006
  • Influence of microstructure on the corrosion property of Mg-Al-Zn alloy was investigated using potentiodynamic polarization experiments, galvanic coupling experiments, and scanning electron microscopy in sodium chloride solutions. Pitting was the most common form of attack in chloride solution, and filiform corrosion was also occurred in AZ91D-T4 alloy. On the contrary, filiform attack in the bulk matrix was predominant corrosion form in AZ91D-T6 alloy, and the number and size of pit were decreased than those of AZ91D-T4 alloy. Galvanic coupling effect between $Mg_{17}Al_{12}$ and matrix was existed, but the propagation of galvanic corrosion was localized only near the $Mg_{17}Al_{12}$ phase in AZ91D-6T alloy. The corrosion resistance of Mg-Al matrix increased with decreasing Al content in the matrix. And, it could be regarded that Al content in the matrix is decreased by precipitation of $Mg_{17}Al_{12}$ during the aging treatment and it decreases the anodic reaction rate of the matrix and galvanic effect in AZ91D-T6 alloy. It could be considered that the composition and microstructure of surface protective layer would be varied by precipitation of $Mg_{17}Al_{12}$ and subsequent decreasing of Al content in the matrix. And it would contribute the corrosion resistance of AZ91D-T6 aging alloy.