• 제목/요약/키워드: Chloride Ion Penetration

검색결과 291건 처리시간 0.027초

물시멘트비가 다른 원전 콘크리트의 염화물 침투저항성 비교평가 (Comparison and Evaluation of Chloride Penetration Resistance in Nuclear Power Plant Concrete with Different Water-to-Cement Ratios)

  • 손정진;김지현;정철우
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.315-316
    • /
    • 2023
  • In the present investigation, the chloride ion penetration resistance of nuclear power plant concrete with varying water-to-cement ratios was assessed. A comparative analysis was conducted on concretes that do not incorporate supplementary cementitious materials, such as fly ash, using permanently decommissioned nuclear structures as a reference. The objective is to employ this acquired data as a fundamental resource for the evaluation of the residual service life of nuclear power plant structures in subsequent studies.

  • PDF

혼화재를 사용한 모르타르 및 콘크리트의 염소이온 침투 저항성 평가 (A Method on the Rapid Assessment of Resistance to Chloride Ion Penetration for Mortar and Concrete with Mineral Admixtures)

  • 박정준;김성욱;고경택;이종석;이장화
    • 콘크리트학회논문집
    • /
    • 제16권4호
    • /
    • pp.485-492
    • /
    • 2004
  • 본 논문에서는 콘크리트의 염소이온에 대한 저항성을 평가하기 위한 대표적인 전기적 촉진시험인 ASTM C 1202 방법을 혼화재를 사용한 콘크리트에 적용하면 콘크리트내의 $OH^-$ 농도의 저하에 따른 영향으로 통과전하량을 낮게 평가할 수 있다는 문제점을 지적하고 이에 해결방안으로 증류수를 사용하는 보정방법을 검토하였다. 실험결과 보정방법 사용시 $OH^-$ 이온과 온도상승에 의한 영향을 배제시킬 수 있었고 NaCl 용액에 장기침지실험을 통해 구한 염화물 확산계수와의 비교시 ASTM C 1202 방법보다 상관성이 높게 나타나 혼화재를 사용한 콘크리트의 염소이온 침투저항성을 보다 정확하게 평가할 수 있는 방법이라 사료된다.

초기 휨균열이 철근콘크리트 부재의 염화물침투저항성에 미치는 영향 (Effect of Initial Flexural Crack on Resistance to Chloride Penetration into Reinforced Concrete Members)

  • 양은익;진상호;김명유;최윤석;한상훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.79-87
    • /
    • 2011
  • 본 연구에서는 초기 균열을 도입한 철근콘크리트 부재에 대한 침지 염화물 침투 실험을 수행하였다. 염화물 확산 특성과 임계 균열폭을 비교하였으며, 콘크리트 자기복원 특성을 검토하였다. 실험결과에 따르면, 표면 균열폭이 증가할수록 염화물 침투저항성이 크게 감소하였으며, 광물질 혼화재를 사용할 경우, 비균열 부재의 염화물 침투저항성은 크게 개선되었지만, 고로슬래그 및 플라이애쉬 혼화재를 사용할 경우에 균열이 발생하게 되면 도리어 염화물 침투저항성은 보통 콘크리트에 비해 크게 저하하였다. 임계 균열폭은 침지 염화물 침투 실험 결과 평균 $29{\mu}m$으로 측정되었다. 자기복원 현상에 의해 $4{\sim}15{\mu}m$ 범위의 균열이 복원되었다. 그러나 콘크리트 자기복원 현상에 의해 시각적으로 복원된 부분의 염화물 침투 저항성은 완전히 회복되지 않았다.

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • 제7권5호
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

혼화재 종류 및 치환율이 염수에 침지한 콘크리트의 내염성능 향상에 미치는 영향에 관한 연구 (A Study on the Effect of the Kinds and Replacement Ratios of Mineral Admixtures on the Development of Chloride Invasion Resistance Property of Concrete Immersed in Salt Water)

  • 유재강;김동석;박상준;원철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2004년도 학술대회지
    • /
    • pp.71-76
    • /
    • 2004
  • This paper investigate that the effect of the concrete containing mineral admixtures(pozzolanic materials such as fly-ash, ground granulated blast-furnace slag, silica fume and meta kaolin) on the resistance properties to chloride ion invasion. The purposed testing procedure was applied to the concrete added mineral admixtures for $3\sim4$ replacement ratios under W/B ratios ranged from 0.40 to 0.55. Specimens were immersed in $3.6\%$ NaCl solution for 330 days, and penetration depth, water soluble chloride contents and acid soluble chloride contents were measured in 28, 91, 182 and 330 days. Then, diffusion coefficient were calculated using total chloride contents. As a results. the kinds of mineral admixture and replacement ratios had a great effect on the resistance property of the concrete to chloride ion invasion compared with the plain concrete. And the optimal replacement ratios of mineral admixture had a limitation for each admixtures. The amount of acid soluble chloride ions and water soluble chloride ions were varied with the kinds of mineral admixtures and the penetration depth from the concrete skin. Chloride diffusion coefficient of each concretes decreased with the time elapsed. and the diffusion coefficients of the concrete immersed salt water for 330 days had a establishment with the compressive strength measured before immersing.

  • PDF

Strength and durability of ultra fine slag based high strength concrete

  • Sharmila, Pichaiya;Dhinakaran, Govindasamy
    • Structural Engineering and Mechanics
    • /
    • 제55권3호
    • /
    • pp.675-686
    • /
    • 2015
  • The use of ground granulated blast furnace slag (GGBFS) from steel industries waste is showing perspective application in civil engineering as partial substitute to cement. Use of such waste conserves natural resources and minimizes the space required for landfill. The GGBFS used in the present work is of ultra fine size and hence serves as micro filler. In this paper strength and durability characteristics of ultra fine slag based high strength concrete (HSC) (with a characteristic compressive strength of 50 MPa) were studied. Cement was replaced with ultra fine slag in different percentages of 5, 10, and 15% to study the compressive strength, porosity, resistances against sulfate attack, sorptivity and chloride ion penetration. The experiments to study compressive strength were conducted for different ages of concrete such as 7, 28, 56, and 90 days. From the detailed investigations with 16 mix combinations, 10% ultra fine slag give better results in terms of strength and durability characteristics.

MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질 (Properties of Polymer-Modified Cement Mortars Using Methylmethacrylate - Butyl Acrylate Latexes)

  • 형원길;송해룡;김완기;소양섭
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.123-128
    • /
    • 2001
  • The Purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. This paper deals with the effect of the monomer ratio on the typical properties of polymer-modified mortars with methyl methacrylate-butyl acrylate latexes. The polymer latex-modified mortars are prepared with 5, 10, IS and 20% of polymer cement ratio respectively, and properties of modified mortars such as water absorption, compressive and flexural strengths, chloride-ion penetration depth are tested. The test results indicate that the monomer ratio is very important factors to characterize the strength properties of polymer-modified mortars, but the water absorption and chloride-ion penetration depth are influenced by polymer-cement ratio rather than monomer ratios.

  • PDF

단면복구용 폴리머 모르타르의 염소이온 투과성 평가 (Performance Evalution of Chloride Ion Penetration of Polymer Mortar for Section Restoration)

  • 박성우;강동수;한복규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.285-288
    • /
    • 2006
  • Recently, polymer mortar has been developed not only more improving the performance of modified mortar with polymer, but also protecting and repairing materials of structures, especially in marine environment because of their excellent performance to improve compressive strength, flexural strength, and adhesive strength. however, in fact, these rehabilitation techniques in marine environment, which consist of removing delaminated areas of concrete, cleaning affected steel and patching with polymer mortar, have proven to be ineffective for marine structures. Also, repairs are often repeated every several years. Therefore, it is neccessary to research performance evalution of chloride ion penetration of polymar mortar for section restoration.

  • PDF

시멘트의 종류에 따른 콘크리트 특성비교 연구 (Comparative Study on the Properties of Concrete Using Several Types of Cement)

  • 송용순;강석화;한정호;구교준;김상철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회 논문집(I)
    • /
    • pp.161-166
    • /
    • 1998
  • The main object of this study is to examine the basic properties of fresh concrete as well as hardened concrete using several types of cement such as ordinary portland cement, sulphate resisting portland cement, blast furnace slag cement, ternary blended cement. In addition, effects of each cement on the durability including drying shrinkage, freeze-thawing resistance, resistance of chloride ion penetration, carbonation of concrete were investigated. As the results of this study, it was proved that most of the properties of concrete using each cement were similar, but there were some differences in bleeding, setting time, resistance of chloride ion penetration and carbonation.

  • PDF

순환굵은골재, 황토, 고로슬래그 미분말 및 마섬유를 사용한 레인가든 구조물 콘크리트의 최적배합설계 및 역학적 특성 (Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber)

  • 김동현;박찬기
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.25-33
    • /
    • 2013
  • In this study, the optimum mix proportions of rain garden structure concrete were decided and the mechanical properties were evaluated. Experimental parameters were blast furnace slag, hwang-toh, recycled aggregates and natural jute fibers. The target compressive strength and chloride ion penetration were more than 24 MPa and less than 1000 coulombs, respectively. The response surface method was used for statistical optimization of experimental results. The optimal mixing ratios of the blast furnace slag, hwang-toh, recycled coarse aggregate and jute fiber volume fraction were determined 59.98 %, 8.74 %, 12.12 % and 0.2 %, respectively. The compressive strength, flexural strength and chloride ion penetration test results of optimum mix ratio showed that the 24.56 MPa, 3.88 MPa and 999.08 columbs, respectively.