• Title/Summary/Keyword: Chloride Ion

Search Result 1,125, Processing Time 0.028 seconds

Isolation, Purification and Characterization of Phytase from Asperfillus sp. (Aspergillus속 균주가 생산하는 Phytase의 분리 정제 및 특성)

  • 천성숙;조영제;차원섭;이희덕;이선호
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 1998
  • To extract insoluble proteins and to improve funtional properties of abolished proteins, an phytase producing Aspergillus sp. SM-15 was isolated from soil. The enzyme was purified and its enzymological characteristics were investigated. Phytase production reached to maximum when the wheat bran medium containing 1% mannose, 1% yeast extract, 1% (NH4)2HPO4 and 0.2% calcium chloride was cultured for 4 days. Phytase was purified 17.1 fold and specific activity was 244.32unit/mg by a sequencial process of ammonium sulfate fraction, ion exchange chromatography and gel filtrations Pruified enzyme was confirmed as a single band by the polyacrylamide gel electro-phoresis. The molecular weight of phytase was estimated to be 46,000. The optimum pH and temperature for the phytase activity were 5.5 and 5$0^{\circ}C$. The enzyme is stable in pH 4.5~5.5, 6$0^{\circ}C$. The activity of purified enzyme was inhibited by Hg2+ whereas activited by Pb2+ and Fe2+. The activity of phytase was inhibited by the treatment with iodine. The result indicate the possible involvement of histidine at active site. Km and Vmax of the puridied phytase were 37.037mM/L and 159.87umol/min, respectively.

  • PDF

Effect of Surfactants on the Electrochemical Performance of Cation-Selective Membrane Electrodes

  • Oh, Hyun-Joon;Cha, Geun-Sig;Nam, Hak-hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • We examined the effect of polyether-type nonionic surfactants (Brij 35, Triton X-100, Tween 20 and Tween 80) on the potentiometric properties of sodium-, potassium- and calcium-selective membranes which are prepared with widely used ionophores and four kinds of polymer matrices [poly(vinyl chloride) (PVC), polyurethane (PU), PVC/PU blend, and silicone rubber (SR)]. It was found that the PVC-based membranes, which provide the best performance among all other matrix-based membranes in the absence of nonionic surfactants, exhibited larger change in their potentiometric properties when nonionic surfactants are added to the sample solution. On the other hand, the sodium-selective SR-based membrane with calix[4]arene, potassium-selective PVC/PU- or SR-based membrane with valinomycin, and the calcium-selective SR-based membrane with ETH 1001 provide almost identical analytical performance in the presence and absence of Tween 20 or Tween 80 surfactants. The origin of nonionic surfactants effect was also investigated by interpreting the experimental results obtained with various matrices and ionophores. The results suggest that the nonionic surfactant extracted into the membrane phase unselectively form complexes with the primary and interfering ions, resulting in increased background potential and lower binding ability for the ionophore. Such effects should result in deteriorated detection limits, reduced response slopes and lower selectivity for the primary ions.

Properties of High-Performance Concrete Containing High - Reactivity Metakaolin (고반응성 메타카올린을 사용한 고성능 콘크리트의 특성)

  • 원종필;권연성;이존자
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.349-356
    • /
    • 2002
  • This research deals with the properties of fresh and hardened high-performance concrete(HPC) incorporating high-reactivity metakaolin(HRM). The properties of fresh and hardened state concrete were investigated included air content, slump flow, setting time, heat of hydration, compressive strength, resistance to chloride-ion penetration, abrasion and repeated freezing and thawing. The properties of the HRM concrete were also compared with those of the portland cement concrete and silica fume(SF) concrete. The laboratory test results indicate that HRM material can be used as a supplementary cementitious material to produce high-performance concrete.

Electrolyte Addition for Enhanced Wastewater Treatment by Electrolysis using Cu Electrode

  • Kim, Woo-Yeol;Yun, Chan-Young;Son, Dong-Jin;Chang, Duk;Kim, Dae-Gun;Hong, Ki-Ho
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • In this study, the effect of electrolyte addition on the removal of organics and nutrients in electrochemical wastewater using a copper electrode, and the characteristics of the by-product of electrolysis were investigated. The removal of organics increased significantly as shorter reaction times upon the addition of chloride ion, and most of the electrolysis reaction was completed within 20 min. The reaction rate gradually increased in proportion to the $Cl^-$/COD ratio, whereas the highest removed mass of organic matter per mass of added electrolyte was observed at a $Cl^-$/COD ratio of 1. After the addition of electrolyte, significant removal of ammoniacal nitrogen was observed as a result of the enhanced generation of oxidizers such as hypochlorite. Excellent phosphorus removal was also achieved in a very short reaction time (within 2 min) by electro-coagulation. As the electrolysis progressed, the amount of by-product increased gradually, whereas a decrease of sludge volume index was observed after the addition of electrolyte. This indicated that the settling performance of the by-products was better, and their removal would be easily achieved.

A Simplified Procedure for the Large-Scale Purification of Urokinase from Human Urine (인뇨로부터 유로키나제 대량정제공정의 단순화)

  • 정광회;선우명
    • KSBB Journal
    • /
    • v.5 no.2
    • /
    • pp.183-189
    • /
    • 1990
  • An efficient method has been developed for the purification of urokinase from 1, 000 liter batches of human urine. The procedure involved precipitation of urokinase with 2mM zinc chloride, resuspension of the precipitate with 0.1M EDTA/0.5M Glycine solution, and CM-Toyopearl and benzamidine-Sepharose column chromatography. The purified urokinase was fully active and possessed a specific activity of 1.07$\times$105IU/mg. The recoveries ranged from 42 to 65% in several preparations(mean value was 51%). And the urokinase purified by this process consisted of about 13% of single chain urokinase (pro-urokinase) as evaluated by SDS-polyacrylamide gel electrophoresis in reducing condition and by S-2444 amldolytic activity under plasmin treatment.

  • PDF

Oxidation of Endocrine Disrupting Chemicals Using Sodium Persulfate (과황산나트륨을 이용한 내분비계장애물질 산화제거)

  • Lim, Chan Soo;Yun, Yeo Bog;Kim, Do Gun;Ko, Seok Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • The objective of this study was to evaluate the oxidation method to remove endocrine disrupting chemicals in reverse osmosis(RO) retentate for the reuse of wastewater effluent. Oxidation of organic pollutants was induced by the persulfate catalyzed by Fe(II). Affecting factors such as initial pH and ionic strength on the Fe(II) catalyzed persulfate oxidation were evaluated. $17{\alpha}$-ethynylestradiol (EE2) degradation efficiency decreased as pH and ionic strength increased. However, the efficiency increased as chloride ion concentration increased due to the influence of radical transfer.

High Temperature Salt Corrosion Property of Ferritic Stainless Steels (페라이트계 스테인리스강의 고온염 부식특성에 관한 연구)

  • Song, Jeon-Young;Park, Joong-Cheol;Ahn, Yong-Sik
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.860-866
    • /
    • 2009
  • It is very important to choose optimal material having good corrosion resistance and capabilities for the part materials such as the automotive exhaust system under a hot salt corrosion atmosphere. Generally, two types of corrosion come into the automotive exhaust system. One is 'Condensate Corrosion', which is occurred by exhaust gas condensate formed at the inner surface of exhaust system heated up during driving, which results in the acid condensate pitting. The other is 'High Temperature Salt Corrosion' occurring from the interaction between the chloride ion coming from salt at the seaside district or snow salt and the outer surface of exhaust system. By the corrosion attack, the main muffler is firstly damaged and the life cycle of an automobile is significantly decreased. It has been investigated that the hot salt corrosion properties of a STS 409L and 436L ferritic stainless steels which are well-known for the materials of the automotive exhaust system. In addition, the corrosion properties of hot dip aluminum coated STS 409L have been compared with uncoated steels. Aluminum coated STS 409L showed a superior corrosion resistance than uncoated STS 409L, and futhermore showed a better corrosion resistance than a STS 436L, which is an expensive ferritic stainless steel having a excellent corrosion resistance caused from more chromium content of an alloying element.

Corrosion Mechanism and Bond-Strength Study on Galvanized Steel in Concrete Environment

  • Kouril, M.;Pokorny, P.;Stoulil, J.
    • Corrosion Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.69-75
    • /
    • 2017
  • Zinc coating on carbon steels give the higher corrosion resistance in chloride containing environments and in carbonated concrete. However, hydrogen evolution accompanies the corrosion of zinc in the initial activity in fresh concrete, which can lead to the formation of a porous structure at the reinforcement -concrete interface, which can potentially reduce the bond-strength of the reinforcement with concrete. The present study examines the mechanism of the corrosion of hot-dip galvanized steel in detail, as in the model pore solutions and real concrete. Calcium ion plays an important role in the corrosion mechanism, as it prevents the formation of passive layers on zinc at an elevated alkalinity. The corrosion rate of galvanized steel decreases in accordance with the exposure time; however, the reason for this is not the zinc transition into passivity, but the consumption of the less corrosion-resistant phases of hot-dip galvanizing in the concrete environment. The results on the electrochemical tests have been confirmed by the bond-strength test for the reinforcement of concrete and by evaluating the porosity of the cement adjacent to the reinforcement.

An Experimental Study on the Properties of Durability of High Strength Concrete Using Domestic.Foreign Meta-kaolin (국내.외산 메타카올린을 사용한 고강도 콘크리트의 내구특성에 관한 실험적 연구)

  • Lee, Kang-Pil;Lee, Seung-Min;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.239-242
    • /
    • 2009
  • As the high-rise building increase due to the gravitation of population to big cities recently, it requires high quality and high performance of Concrete. As a result, people are keenly interested in Meta-kaolin as new admixture favorable from an economic perspective, which has strength and endurance with admixture at the same level like Silica-fume. Accordingly, as to Meta-kaolin, this study was to set by three levels like domestic one, foreign one, and Silica-fume, the water-binding material ratio 25%, and four level substitute like 0, 10, 20, and 30(%) in order to compare and analyze the quality durability of high-concrete according to the substitute of Meta-kaolin applicable with replacement of Silica-fume. As a result of performing experiment it was found that when water-binding material ratio increases, resistance of neutralization, carbonation, salt damage and sulfate decrease, and when replacement ratio of mineral admixture increases, depth of accelerating carbonation gets greater. Also, the combination of SF and MK-B favored resistance to chloride ion penetration better than MK-A, and it was found that when replacement ratio of binding material increases, the resistance to sulphuric acid increases. Therefore, based on this study, it was understood that meta-kaolin is useable in replacement of silicafume.

  • PDF

Preparation of Magnetite Nanoparticles by Two Step Reaction (2단계 반응에 의한 마그네타이트 나노입자의 제조)

  • Shin, Dae-Kyu;Riu, Doh-Hyung
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.148-155
    • /
    • 2008
  • Nano magnetite particles have been prepared by two step reaction consisting of urea hydrolysis and ammonia addition at certain ranges of pH. Three different concentrations of aqueous solution of ferric ($Fe^{3+}$) and ferrous ($Fe^{2+}$) chloride (0.3 M-0.6 M, and 0.9 M) were mixed with 4 M urea solution and heated to induce the urea hydrolysis. Upon reaching at a certain pre-determined pH (around 4.7), 1 M ammonia solution were poured into the heated reaction vessels. In order to understand the relationship between the concentration of the starting solution and the final size of magnetite, in-situ pH measurements and quenching experiments were simultaneous conducted. The changes in the concentration of starting solution resulted in the difference of the threshold time for pH uprise, from I hour to 3 hours, during which the akaganeite (${\beta}$-FeOOH) particles nucleated and grew. Through the quenching experiment, it was confirmed that controlling the size of ${\beta}$-FeOOH and the attaining a proper driving force for the reaction of ${\beta}$-FeOOH and $Fe^{2+}$ ion to give $Fe_3O_4$ are important process variables for the synthesis of uniform magnetite nanoparticles.