• Title/Summary/Keyword: Chloride Ion

Search Result 1,133, Processing Time 0.023 seconds

Solvent Effects on the Solvolysis of cis-$[Co(en)_2ClNO_2]^+$ Ion and Its Mechanism (cis-$[Co(en)_2ClNO_2]^+$ 착이온의 가용매 분해반응에 미치는 용매의 영향과 그 반응 메카니즘)

  • Jong-Jae Chung;Young-Ho Park
    • Journal of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.3-8
    • /
    • 1986
  • The investigation of the effect of solvent structure on the first-order solvolysis of cis-$[Co(en)_2ClNO_2]^+$ion has been extended to water + co-solvent mixtures where the co-solvents are glycerol, ethylene glycol, isopropyl alcohol and t-butyl alcohol. Rates of solvolysis have been evaluated by spectrophotometric method at temperature 25∼30$^{\circ}$C. The polarity of solvent has influence on the variation of rate constant. The non-linear plot of the rate constant in log scale versus $\frac{D-1}{2D+1}$ implies that change in solvent structure with composition plays an important role in determining the variation of rate constant. The linearity of the plot of the rate constant in log scale versus the Grundwald-Winstein Y factor confirms that the solvolysis is an Id-type process with considerable extension of the metal chloride bond in the transition state. In the Kivinen equation the slope of the plot of log k versus $log(H_2O)$ suggests that the solvolysis is also an Id-type process. The application of free energy cycle shows that the effect of solvent structure is greater in the transition state than in the initial state.

  • PDF

Synthesis and Investigation of Mass Spectra of 3-(substituent)-benzopyran[3.2-c]-[1]-benzopyran-6,7-diones (3-치환-벤조피란[3,2-c]-[1]-벤조피란-6,7-다이온의 합성과 질량스펙트럼)

  • I. M. EI-Deen;H.K. Ibrahim
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.2
    • /
    • pp.137-146
    • /
    • 2003
  • 3-Hydroxybenzopyran[3,2-c]-[1]-benzopyran-6,7-diones (3) and 3-methoxycarbonylcoumarin (4) were prepared via condensation of 1 with resorcinol in the presence of sodium methoxide. The chemical behavior of 3 towards acetic anhydride, alkyl halides and diazonium chloride is described. The electron impact ionization mass spectra of compounds 4,5 and 6a,b show a weak molecular ion peak and a base peak of m/z 89, m/z 280. m/z 91 and m/z 120 resulting from a cleavage fragmentation respectively. The molecular ion of compounds 3, 6b, and 7a is a base peak of m/z 280, m/z 366 and m/z 488 respectively. Compound 7a give a characteristic fragmentation pattern with a two very stable fragmentation of m/z 383 and m/z 77.

Effect of Ionic Polymers on Sodium Intake Reduction (이온성 고분자를 이용한 나트륨 섭취 감소 효과)

  • Park, Sehyun;Lee, YoungJoo;Lee, Jonghwi
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.533-538
    • /
    • 2013
  • Sodium chloride is present in our body fluids, and the blood contains approximately 0.9 wt% salt, which plays an important role in maintaining the osmotic pressure. However, the amount of salt intake has consistently increased, and an excessive intake can be the cause of high blood pressure, etc. In this study, it was investigated in vivo and in vitro whether biocompatible ionic polymers with K or Ca ions can be replaced by Na ions through an ion exchange process to be excreted. Among the polymers, Ca-polystyrene sulfonate, K-polystyrene sulfonate, Ca-carrageenan, and Ca-tamarind had an excellent Na exchange ability in the body temperature, simulated gastric fluid and also simulated intestinal fluid. The mechanism of Na removal by absorption and excretion without changing food taste in the mouth through the insolubility properties of these polymers is expected to be a solution for the current problems related with excess sodium intake.

EFFECTS OF SURFACTANTS ON THE FENTON DEGRADATION OF PHENANTHRENE IN CONTAMINATED SEDIMENTS

  • Jee, Sang-Hyun;Ko, Seok-Oh;Jang, Hae-Nam
    • Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.138-143
    • /
    • 2005
  • Laboratory batch experiments were conducted to evaluate the Fenton degradation rates of phenanthrene. Fenton reactions for the degradation of phenanthrene were carried out with aqueous and slurry phase, to investigate the effects of sorption of phenanthrene onto solid phase. Various types of surfactants and electrolyte solutions were used to evaluate the effects on the phenanthrene degradation rates by Fenton's reaction. A maximum 90% removal of phenanthrene was achieved in aqueous phase with 0.9% of $H_2O_2$ and 300 mg/L of $Fe^{2+}$ at pH 3. In aqueous phase reaction, inhibitory effects of synthetic surfactants on the removal of phenanthrene were observed, implying that surfactant molecules acted as strong scavenger of hydroxyl radicals. However, use of $carboxymethyl-{\beta}-cyclodextrin$ (CMCD), natural surfactant, showed a slight enhancement in the degradation of phenanthrene. It was considered that reactive radicals formed at ternary complex were located in close proximity to phenanthrene partitioned into CMCD cavities. It was also show that Fenton degradation of phenanthrene were greatly enhanced by addition of NaCl, indicating that potent radical ion ($OCI^-$) played an important role in the phenanthrene degradation, although chloride ion might be acted as scavenger of radicals at low concentrations. Phenanthrene in slurry phase was resistant to Fenton degradation. It might be due to the fact that free radicals were mostly reacting with dissolved species rather than with sorbed phenanthrene. Even though synthetic surfactants were added to increase the phenanthrene concentration in dissolved phase, low degradation efficiency was obtained because of the scavenging of radicals by surfactants molecules. However, use of CMCD in slurry phase, showed a slight enhancement in the phenanthrene degradation. As an alternative, use of Fenton reaction with CMCD could be considered to increase the degradation rates of phenanthrene desorbed from solid phase.

The Preparation and Electrochemical Properties of Pore-filled and Polystyrene-based Anion-exchange Membranes Using Poly(ethylene glycol)methyl Ether Methacrylate (Poly(ethylene glycol)methyl Ether Methacrylate를 이용한 세공충전 폴리스티렌계 음이온 교환막의 제조 및 전기화학적 특성)

  • Mun, Hye Jin;Choi, Jae Hak;Hong, Young Taik;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.515-523
    • /
    • 2015
  • While commercial polystyrene-based ion exchange membranes have simple manufacturing processes, they also possess poor durability due to their brittleness. Poly(ethylene glycol)methyl ether methacrylate with hydrophilic side chains of poly(ethylene glycol) was used as a co-monomer to make the membranes have improved flexibility. Hydrophilicity/hydrophobicity of the anion exchange membranes were able to be adjusted by varying the chain lengths of the poly(ethylene glycol). For the preparation of the anion exchange membranes, a porous PE substrate was immersed into monomer solutions and thermally polymerized. The prepared membranes were subsequently reacted with trimethylamine to produce anion exchange functional groups, Quaternary ammonium salts. The prepared pore-filled anion exchange membranes were evaluated in terms of ion exchange capacity, electric resistance, elongation at break and water uptake.

Surface Modification of Gold Electrode Using Nafion Polymer and Its Application as an Impedance Sensor for Measuring Osmotic Pressure (나피온 폴리머를 이용한 금 전극의 표면 개질 및 이의 삼투압 측정용 임피던스 센서 응용)

  • Min Sik, Kil;Min Jae, Kim;Jo Hee, Yoon;Jinwu, Jang;Kyoung G., Lee;Bong Gill, Choi
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • In this work, we developed a Nafion polymer-coated impedance sensor with two gold electrode configurations to measure the ion concentration in solution samples. The gold electrodes were fabricated through the sputtering process, followed by surface modification using Nafion polymer. The resulting sensors enable the prevention of the polarization phenomenon on the electrode surface, resulting in stable measurement of electrochemical signals. Spectroscopy and scanning electron microscopy measurements revealed that the thin film of Nafion was coated uniformly onto the surface of the gold electrode. The Nafion-coated sensor exhibited more stable impedance signals than the conventional gold electrode. It showed a highly reliable calibration curve (R2 = 0.983) of the impedance sensor using a standard sodium chloride solution. In addition, a comparison experiment between the impedance sensor and a commercial conductivity sensor was performed to measure the ion concentration of artificial tears, showing similar results for the two sensors.

Transcriptome Profiling of Differentially Expressed Genes in Cowpea (Vigna unguiculata L.) Under Salt Stress

  • Byeong Hee Kang;Woon Ji Kim;Sreepama Chowdhury;Chang Yeok Moon;Sehee Kang;Bo-Keun Ha
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.261-261
    • /
    • 2022
  • Cowpea [Vigna unguiculata (L.) Walp] is one of the most important grain legumes that enhance soil fertility and is well-adapted to various abiotic stress. Also, it is cultivated worldwide as a tropical annual crop, and the semi-arid regions are known as the main cowpea-produced regions. However, accumulation of soil salinity induced by low rainfall in these regions is reducing crop yields and quality. In general, plants exposed to soil salinity cause an accumulation of high ion chloride, which leads to the degradation of root and leaf proteins. In this study, we identified candidate genes associated with salinity tolerance through an analysis of differentially expressed genes (DEGs) in four cowpea germplasms with contrasting salinity tolerance. A total of 553,776,035 short reads were obtained using the Illumina Novaseq 6000 platform for RNA-Seq, which were subsequently aligned to the reference genome of cowpea Vunguiculata v1.2. A total of9,806 DEGs were identified between NaCl treatment and control of four cowpea germplasms. Among these DEGs, functions related to salt stress such as calcium transporter and cytochrome-450 family were associated with salt stress. In GO analysis and KEGG analysis, these DEGs were enriched in terms such as the "phosphorylation", ''extracellular region", and "ion binding". These RNA-seq results will improve the understanding of the salt tolerance of cowpea and can be used as useful basic data for molecular breeding technology in the future.

  • PDF

Water Quality of Some Spring Waters in Pusan Area (부산시내에 산재하는 몇몇 약수터 약수의 수질)

  • KIM Yong-Gwan;CHO Hyeon-Seo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.18 no.6
    • /
    • pp.538-544
    • /
    • 1985
  • This study was carried cut to evaluate the water quality of spring waters in Pusan area(see Fig. 1). In this experiment, twenty-five water samples were collected from 5 stations from December 1983 to August 1984. Range and mean values of constituents of the samples are as follows: pH $5.80{\sim}7.25$, 6.60; water temperature $6.0{\sim}23.0^{\circ}C,\;12.9^{\circ}C$; total residue $33.0{\sim}325mg/l$, 121.2mg/l; alkalinity $4.75{\sim}51.6mg/l$, 24.1mg/l; hardness $9.47{\sim}85.0mg/l$, 30.3mg/l; electrical conductivity $0.495{\sim}2.750{\times}^2{mu}{\mho}/cm,\;1.239{\times}10^2{\mu}{\mho}/cm$;turbidity $0.54{\sim}7.80$NTU, 2.04NTU; $KMnO_4$ consumed $0.51{\sim}8.47mg/l$, 1.96mg/l; chloride ion $4.91{\sim}36.0mg/l$, 12.55mg/l; fluoride ion ND-0.30ppm, 0.08ppm; nitrate-nitrogen ND-8.94mg/l, 1.94m:g/l; nitrite-nirogen ND-0.10mg/l, 0.03mg/l; ammonia-nitrogen ND-0.16mg/l, 0.03mg/l: phosphate-phosphorus ND-0.09mg/l, 0.03mg/l; silicate-silicious $0.42{\sim}22.7ng/l$, 7.96mg/l; copper ND-10.5ppb, 2.46ppb; lead ND-22.7ppb, 3.54ppb; zinc ND-103ppb, 21.33ppb; iron $20.3{\sim}2,800ppb$, 801.72ppb, respectively. Arsenic, cyan, cadmium, manganese, mercury, chrome and phenol were not detected. Total residue, electrical conductivity, turbidity and chloride ion of station 1 (Milrakdong) were higher than others as 178.1mg/l, $2.127{\times}10^2{\mu}{\mho}/cm$, 3.16NTU and 16.32mg/l. The concentration of silicious had a great influence on precipitation. The concentration of fluoride ion of spring waters was lower as 0.08ppm than the criterion for drinking water as 1ppm, while iron was exceed 2.7 times as 801.72ppb.

  • PDF

Chemical Features and Purification of Immunostimulating Polysaccharides from the Fruit Bodies of Agaricus blazei (신령버섯(Agaricus blazei)으로부터 면역증강활성 다당류의 분리 및 화학적 특성)

  • Cho, Soo-Muk;Park, Jeong-Sik;Kim, Kwang-Po;Cha, Dong-Yeol;Kim, Hwan-Mook;Yoo, Ick-Dong
    • The Korean Journal of Mycology
    • /
    • v.27 no.2 s.89
    • /
    • pp.170-174
    • /
    • 1999
  • Water-soluble polysaccharides from the fruiting bodies of Agaricus blazei Murill were extracted with 0.9% sodium chloride and hot water, successively. The purified polysaccharides showed a potent immunostimulating activity. Eight major polysaccharides, which were named from AG-l to AG-8, were fractionated and purified by ethanol precipitation, ion exchange chromatography on DEAE-cellulose and gel filtration on Toyopearl HW 65F. These polysaccharides were identified to be homogeneous by analysis of HPLC. Three major active polysaccharides (AG-2, -3, and -6) showed relatively strong immunostimulating activity. AG-2 and -3 were composed of glucose, galactose and mannose in the molar ratios of 74.0:15.3:10.7 and 63.6:17.6:12.7, respectively. AG-6 was composed of glucose and ribose in the molar ratios of 81.4:12.6.

  • PDF

The Preparation and Electrochemical Properties of Homogeneous Anion-exchange Composite Membranes Containing Acrylonitrile-butadiene Rubber (Acrylonitrile-butadiene rubber를 포함한 균질계 음이온교환 복합막의 제조 및 전기화학적 특성)

  • Song, Pu Reum;Mun, Hye Jin;Hong, Sung Kwon;Kim, Jeoung Hoon;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.463-471
    • /
    • 2014
  • While poly(styrene)-based anion exchange membranes have the advantage like easy and simple manufacturing process, they also possess the disadvantage of poor durability due to their brittleness. Acrylonitrile-butadiene rubber was used here as an additive to make the membranes have improved flexibility and durability. For the preparation of the anion exchange membranes, a PP mesh substrate was immersed into monomer solutions with vinylbenzyl chloride, styrene, divinylbenzene and benzoyl peroxide, then thermally polymerized & crosslinked. The prepared membranes were subsequently post-aminated using trimethylamine to result in $-N+(CH_3)_3$ group-containing composite membranes. Various contents of vinylbenzyl chloride and acrylonitrile-butadiene rubber were investigated to optimize the membrane properties and the prepared membranes were evaluated in terms of water content, ion exchange capacity and electric resistance. It was found that the optimized composite membranes showed higher IEC and lower electric resistance than a commercial anion exchange membrane(AMX) and have excellent flexibility and durability.