• 제목/요약/키워드: Chitosan-alginate-Fe(II) complex

검색결과 2건 처리시간 0.018초

키토산-알긴산-Fe(II) 복합체의 항균활성 (Antimicrobial Activity of Chitosan-alginate-Fe(II) Complex.)

  • 전영현;김광윤;오석중;임선영;전순배;배석
    • 한국미생물·생명공학회지
    • /
    • 제31권1호
    • /
    • pp.90-93
    • /
    • 2003
  • The antibacterial activity of chitosan-alginate-Fe(II) complex (CAFC) against Escherichia coli and Staphylococcus aureus, and an opportunistic pathogen, Candida albicans, was investigated. A concentration of 1 mg/1 was needed to inhibit the growth of S. aureus and E. coli, while 100 mg/liter was sufficient for the growth inhibition of Candida albicans. The ion leakage of potassium and phosphate from E. coli cell and the penetration of ethidium bromide dye into it indicate that CAFC might be able to increase the cell permeability and consequently cellular leakage, thus leading to cell plasmolysis. Scanning electronmicroscope showed that E. coli cells treated with CAFC became irregular, swelling and expanded. In a field trial, control piglets showed average mortality of up to 60% within 3 days after the onset of diarrhea. In contrast, CAFC-treated groups without mortality was decreased to average 56% on the 1 st day after the treatment, and average 7% on the 3rd day. After then, piglets with diarrhea was not found.

Effects of a Dietary Chitosan-Alginate-Fe(II) Complex on Meat Quality of Pig Longissimus Muscle during Ageing

  • Park, B.Y.;Kim, J.H.;Cho, S.H.;Hwang, I.H.;Jung, O.S.;Kim, Y.K.;Lee, J.M.;Yun, S.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권3호
    • /
    • pp.414-419
    • /
    • 2005
  • The current study was conducted to investigate the effects of dietary chitosan-alginate-Fe(II) complex (CAFC) supplementation on carcass and meat qualities of pig m. longissimus during chiller ageing. One hundred and twenty-two LYD (Landrace${\times}$Yorkshire${\times}$Duroc) pigs were sampled from an industrial population. Seventy-four pigs (32 gilts and 42 barrows) were administered 3 ml of dietary supplementation of CAFC per day from 25 to 70 days of age, while the remaining 48 pigs (20 gilts and 28 barrows) were fed the same commercial feeding regime without the supplementation. For assessing the dietary effects on pH, objective meat color, cooking loss, water-holding capacity (WHC), thiobarbituric acid reactive substances (TBARS), volatile basic nitrogen (VBN) and fatty acid composition during ageing, 20 barrows (10 of each treatment) were randomly sampled, and aged for 3, 7, 12, 16, 20 and 25 days in a $1^{\circ}C$ chiller. The results showed that CAFC-fed pigs required approximately 10 fewer feeding days than the control group. Furthermore, the treatment resulted in greatly higher carcass grade whereby the grade A was increased by approximately 35% and 7% for gilts and barrows, respectively. The treatment had no significant effect (p>0.05) on pH, meat color and WHC during ageing. On the other hand, the CAFC-fed pigs showed significantly (p<0.05) lower TBARS values from 20 days of storage. In addition, the sum of unsaturated fatty acids for the treated group was significantly (p<0.05) higher than that for the control group after the storage time. This implied that CAFC supplementation could reduce the formation of free radicals in fatty acids (i.e., lipid oxidation). The treatment also significantly (p<0.05) retarded VBN formation during ageing, indicating a significant reduction in protein degradation. However, as there was no difference in pH between the two groups, the result raised a possibility that antibacterial activity of the CAFC alone could cause reduction in the formation of TBARS and VBN. In this regard, although the treatment effectively slowed down the formation of TBARS and TBA during chiller ageing, it was not resolved whether that was associated with the direct effect of the antioxidant function of chitosan and/or alginate, or a consequence of their antibacterial functions.