• Title/Summary/Keyword: Chitosan modified

Search Result 69, Processing Time 0.024 seconds

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Effects of Modified Atmosphere Packaging on the Quality of Chitosan and $CaCl_2$ Coated Mushroom (Agaricus bisporus) (환경가스조절 포장이 키토산 및 $CaCl_2$로 코팅 처리된 양송이 버섯의 품질에 미치는 영향)

  • Lee, Jin-Sil
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1308-1314
    • /
    • 1999
  • The effects of modified atmosphere(MA) packaging and coating on the quality of mushroom (Agaricus bisporus) were investigated. Whole mushrooms(100 g) were packed with polyvinyl chloride(PVC) film wrap, PD941 and PD961 film bags and were stored in a chamber at $12^{\circ}C$ and 80% RH for 6 days. Gas composition of packages, respiration rate, weight loss, color and maturity index of MA packaged mushrooms were examined. The wrap packaged mushrooms showed different level of internal $CO_2$ concentrations among water washed, chitosan coated and $CaCl_2$ coated subgroups significantly at 5% level. The maximum $CO_2$ concentration of PD941 and PD961 packages for all coated showed $4.1{\sim}4.7%$ and $10.4{\sim}11.7%$, respectively, for the first day. PD961 package showed the lowest $O_2$ concentration compared to other groups. There were no significant respiration rate differences between wrap packed and PD941 packaged. Respiration rate of water washed. chitosan coated and $CaCl_2$ coated in PD961 packaged was 192 mg, 226 mg and 245 mg, respectively. Maturity index of PD961 packaged were not significantly different among the water washed, chitosan and $CaCl_2$ coated packages. Chitosan coating showed a negative effect on color change of mushrooms. The weight loss of 961 packaged was lower $(7.0{\sim}8.0%)$ that those of wrap packaged and PD941 packaged.

  • PDF

Single-Protein Molecular Interactions on Polymer-Modified Glass Substrates for Nanoarray Chip Application Using Dual-Color TIRFM

  • Kim, Dae-Kwang;Lee, Hee-Gu;Jung, Hyung-Il;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.5
    • /
    • pp.783-790
    • /
    • 2007
  • The immobilization of proteins and their molecular interactions on various polymer-modified glass substrates [i.e. 3-aminopropyltriethoxysilane (APTS), 3-glycidoxypropyltrimethoxysilane (GPTS), poly (ethylene glycol) diacrylate (PEG-DA), chitosan (CHI), glutaraldehyde (GA), 3-(trichlorosilyl)propyl methacrylate (TPM), 3'-mercaptopropyltrimethoxysilane (MPTMS), glycidyl methacrylate (GMA) and poly-l-lysine (PL).] for potential applications in a nanoarray protein chip at the single-molecule level was evaluated using prismtype dual-color total internal reflection fluorescence microscopy (dual-color TIRFM). A dual-color TIRF microscope, which contained two individual laser beams and a single high-sensitivity camera, was used for the rapid and simultaneous dual-color detection of the interactions and colocalization of different proteins labeled with different fluorescent dyes such as Alexa Fluor® 488, Qdot® 525 and Alexa Fluor® 633. Most of the polymer-modified glass substrates showed good stability and a relative high signal-to-noise (S/N) ratio over a 40-day period after making the substrates. The GPTS/CHI/GA-modified glass substrate showed a 13.5-56.3% higher relative S/N ratio than the other substrates. 1% Top-Block in 10 mM phosphate buffered saline (pH 7.4) showed a 99.2% increase in the blocking effect of non-specific adsorption. These results show that dual-color TIRFM is a powerful methodology for detecting proteins at the single-molecule level with potential applications in nanoarray chips or nano-biosensors.

A Study on the Labeling Efficiency and Cytotoxicity of Hepatocyte-targeting Galactosylated Chitosan Compounds (간세포 지향성 Galactosylated Chitosan 화합물의 표지 수율 향상 및 세포 독성에 대한 연구)

  • Kim, Dae-Weung;Jeong, Hwan-Jeong;Kim, Eun-Mi;Kim, Se-Lim;Kang, Yun-Hee;Kim, Min-Woo;Kim, Chang-Guhn;Sohn, Myung-Hee
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.5
    • /
    • pp.278-283
    • /
    • 2005
  • Purpose: In prior study, we synthesized $^{99m}Tc$-galactosylated chitosan (GC) and performed in vivo biodistribution study, showed specific targeting to hepatocyte. The aim of this study is to evaluate the labeling efficiency and cytotoxicity of modified galactosylated chitosan compounds, galactosyl methylated chitosan (GMC) and HYNIC-galactosylated chitosan (GCH). Materials and Methods: GC, GMC and GCH were synthesized and radiolabeled with $^{99m}Tc$. Then, they were incubated for 6 hours at room temperature and human serum at $37^{\circ}C$. Labeling efficiencies were determined at 15, 30 m, 1, 2, 3 and 6 h after radiolabeling. To evaluate cytotoxicity, MTT assay was performed in HeLa and HepG2 cells. Results: In comparison with them of $^{99m}Tc$-GC labeling efficiencies of $^{99m}Tc$-GMC were significantly improved (100, 97 and 89%) in acetone and 96.3, 95.8 and 75.6% in saline at 15 m, 1 and 6 h, respectively). Moreover, $^{99m}Tc$-GCH showed more improved labeling efficiencies (>95% in acetone and human serum and >90% in saline at 6 h). In MTT assay, cytotoxicity was very low and not different from that of controls. Conclusion: These results represent that these compounds are radiochemically compatible radiopharmaceuticals, can be used in hepatocyte specific imaging study and in vivo gene or drug delivery monitoring.

Effect of Bioactive Glass Addition to the TTCP/DCPA Based Injectable Bone Substitute for Improved Biocompatibility

  • Sadiasa, Alexander;Sarkar, Swapan Kumar;Franco, Rose Ann;Yang, Hun-Mo;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.52.1-52.1
    • /
    • 2011
  • In this work, the effect of the addition of bioactive glass in the biocompatibility and mechanical behavior of conventional TTCP/DCPA based bone cement were investigated. The cement was initially modified with chitosan and HPMC which cross-linked with citric acid to improved mechanical properties.The injectable bone substitutes were further modified by adding varying amounts of bioactive glass (0%, 10%, 20% and 30%) and its effects on the biocompatibility of the material were studied. Afterbio-glass powders were mixed with the optimized composition for HPMC and citric acid content,the IBS was incubated at $37^{\circ}C$ at different time intervals and showed progressive formation of HAp with increasing time. Mechanical properties like Vickers hardness and compressive strength were found to increase with the increasing amount of bioactive glass addition and that setting time was shortened. The fabricated IBS morphologies were further characterized using SEM. MTT assay was performed to check the cell cytotoxicity and cell proliferation for 1, 3 and 5 days. Cell morphology, adhesion and proliferation behavior of cell in the IBS by culturing MG-63 cells on the IBS for 20, 60 and 90 mins and 1, 3 and 5 days was also investigated. All the results showed increasing biocompatibility as the bioglass content increased. MTT results found the materials to be cytocompatible and SEM images showed that cells attached and proliferated successfully.

  • PDF

Direct Electrochemistry and Electrocatalysis of Myoglobin with CoMoO4 Nanorods Modified Carbon Ionic Liquid Electrode

  • Zhao, Zengying;Cao, Lili;Hu, Anhui;Zhang, Weili;Ju, Xiaomei;Zhang, Yuanyuan;Sun, Wei
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • By using ionic liquid 1-hexylpyridinium hexafluorophosphate ($HPPF_6$) based carbon ionic liquid electrode (CILE) as the substrate electrode, a $CoMoO_4$ nanorods and myoglobin (Mb) composite was casted on the surface of CILE with chitosan (CTS) as the film forming material to obtain the modified electrode (CTS/$CoMoO_4$-Mb/CILE). Spectroscopic results indicated that Mb retained its native structures without any conformational changes after mixed with $CoMoO_4$ nanorods and CTS. Electrochemical behaviors of Mb on the electrode were carefully investigated by cyclic voltammetry with a pair of well-defined redox peaks from the heme Fe(III)/Fe(II) redox center of Mb appeared, which indicated that direct electron transfer between Mb and CILE was realized. Electrochemical parameters such as the electron transfer number (n), charge transfer coefficient (${\alpha}$) and electron transfer rate constant ($k_s$) were estimated by cyclic voltammetry with the results as 1.09, 0.53 and 1.16 $s^{-1}$, respectively. The Mb modified electrode showed good electrocatalytic ability toward the reduction of trichloroacetic acid in the concentration range from 0.1 to 32.0 mmol $L^{-1}$ with the detection limit as 0.036 mmol $L^{-1}$ ($3{\sigma}$), and the reduction of $H_2O_2$ in the concentration range from 0.12 to 397.0 ${\mu}mol\;L^{-1}$ with the detection limit as 0.0426 ${\mu}mol\;L^{-1}$ ($3{\sigma}$).

Analysis of cell survival genes in human gingival fibroblasts after sequential release of trichloroacetic acid and epidermal growth factor using the nano-controlled release system (나노방출제어시스템을 이용하여 trichloroacetic acid와 epidermal growth factor의 순차적 방출을 적용한 인간치은섬유아세포의 세포생존 관련 유전자 연구분석)

  • Cho, Joon Youn;Lee, Richard sungbok;Lee, Suk Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.3
    • /
    • pp.145-157
    • /
    • 2020
  • Purpose: This study was to determine the possible effects of trichloroacetic acid (TCA) and epidermal growth factor (EGF) through cell survival genes of the PI3K-AKT signaling pathway when applying an hydrophobically modified glycol chitosan (HGC)-based nanocontrolled release system to human gingival fibroblasts in oral soft tissue regeneration. Materials and Methods: An HGC-based nano-controlled release system was produced, followed by the loading of TCA and EGF. The group was divided into control (CON), TCA-loaded nano-controlled release system (EXP1), and the TCA- and EGF- individually loaded nano-controlled release system (EXP2). A total for 29 genes related to the PI3K-AKT signaling pathway were analyzed after 48h of culture in human gingival fibroblasts. Real-time PCR, 1- way ANOVA and multiple regression analysis were performed. Results: Cell survival genes were significantly upregulated in EXP1 and EXP2. From multiple regression analysis, ITGB1 was determined to be the most influential factor for AKT1 expression. Conclusion: The application of TCA and EGF through the HGC-based nano-controlled release system can up-regulate the cell survival pathway.

A 3D bioprinting system and plasma-surface modification to fabricate tissue engineering scaffolds (조직공학용 세포담체 제작을 위한 플라즈마-표면개질이 포함된 바이오프린팅 시스템)

  • Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.3-23
    • /
    • 2017
  • The achievement of tissue engineering can be highly depending on the capability to generate complicated, cell seeded three dimensional (3D) micro/nano-structures. So, various fabrication techniques that can be used to precisely design the architecture and topography of scaffolding materials will signify a key aspect of multi-functional tissue engineering. Previous methods for obtaining scaffolds based on top-down are often not satisfactory to produce complex micro/nano-structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. However, a bioprinting method can be used to design sophisticated 3D tissue scaffolds that can be engineered to mimic the tissue architecture using computer aided approach. Also, in recent, the method has been modified and optimized to fabricate scaffolds using various natural biopolymers (collagen, alginate, and chitosan etc.). Variation of the topological structure and polymer concentration allowed tailoring the physical and biological properties of the scaffolds. In this presentation, the 3D bioprinting supplemented with a newly designed plasma treatment for attaining highly bioactive and functional scaffolds for tissue engineering applications will be introduced. Moreover, various in vivo and in vitro results will show that the fabricated scaffolds can carry out their structural and biological functionality.

  • PDF

Amperometric Immunosensor for Myeloperoxidase in Human Serum Based on a Multi-wall Carbon Nanotubes-Ionic Liquid-Cerium Dioxide Film-modified Electrode

  • Lu, Lingsong;Liu, Bei;Liu, Chenggui;Xie, Guoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3259-3264
    • /
    • 2010
  • A label-free amperometric immunosensor has been proposed for the detection of myeloperoxidase (MPO) in human serum. To fabricate such an immunosensor, a composite film consisting of N,N-dimethylformamide (DMF), multiwall carbon nanotubes (MWCNTs) and 1-ethyl-3-methyl imidazolium tetrafluoroborate ($EMIMBF_4$) suspension was initially formed on a glassy carbon electrode (GCE). Then cerium dioxide ($CeO_2$) dispersed by chitosan was coated on the GCE. After that, MPO antibodies (anti-MPO) were attached onto the nano$CeO_2$ surface. With a noncompetitive immunoassay format, the antibody-antigen complex formed between the immobilized anti-MPO and MPO in sample solution. The immunosensor was characterized by cyclic voltammetry, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The factors influencing the performance of the immunosensor were studied in detail. Under optimal conditions, the current change before and after the immunoreaction was proportional to MPO concentration in the range of 5 to $300\;ng\;mL^{-1}$ with a detection limit of $0.2\;ng\;mL^{-1}$.

Thermal resistance effect of graphene doped zinc oxide nanocomposite in fire retardant epoxy coatings

  • Rao, Tentu Nageswara;Hussain, Imad;Riyazuddin, Riyazuddin;Koo, Bon Heun
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.4
    • /
    • pp.411-417
    • /
    • 2019
  • Graphene doped zinc oxide nanoparticles (G-ZnO) were prepared using modified hummer's technique together with the ultrasonic method and characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), fourier-transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM). Different samples of epoxy resin nanocomposites reinforced with G-ZnO nanoparticles were prepared and were marked as F1 (without adding nanoparticles), F2 (1% w/w G-ZnO), and F3 (2% w/w G-ZnO) in combination of ≈ 56:18:18:8w/w% with epoxy resin/hardener, ammonium polyphosphate, boric acid, and Chitosan. The peak heat release rate (PHRR) of the epoxy nanocomposites was observed to decrease dramatically with the increasing G-ZnO nanoparticles. However, the LOI values increased significantly with the increase in wt % of G-ZnO nanoparticles. From the UL-94V data, it was confirmed that the F2 and F3 samples passed the flame test and were rated as V-0. The results obtained in the present work clearly revealed that the synthesized samples can be used as efficient materials in fire-retardant coating technology.