• Title/Summary/Keyword: Chitinase Activity

Search Result 203, Processing Time 0.03 seconds

Molecular Cloning of Acinetobacter sp. WC-17 Gene Encoding Chitinase

  • SOON-DUCK HONG;SHIN, WOO-CHANG;DONG-SUN LEE;JONG-GUK KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 1995
  • The chitinase gene was cloned from Acinetobacter sp. WC-17 for investigating the genetic control and enzymatic properties of bacterial chitinase. A genomic library of Acinetobacter sp. WC-17 was prepared in E.coli JM109 by using pUC18 as a vector. The chitinase-positive clone containing 3.2kb insert fragment was obtained from 5, 000 insert-bearing transformants. The optimum pH and temperature of cloned enzyme were 6.0 and $55^{\circ}C$, respectively. Almost all the chitinase activity of E.coli recombinant was localized in the periplasmic fraction, while most of the enzyme activity of Acinetobacter sp. WC-17 was found in the extracellular fraction.

  • PDF

Chitinase from an Antarctic Bacterium, Sanguibacter sp. KCTC10714

  • Lee, Hong-Kum
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2006.05a
    • /
    • pp.97-99
    • /
    • 2006
  • A chitinase-producing bacterium strain KCTC10714 was isolated from sea sand around the King Sejong Station, King George Island in Antarctica. It was identified as Sanguibacter sp., based on the biochemical properties and 16S rRNA gene sequence. KCTC10714 chitinase showed enzyme activity in broad range of temperature from 0 to $70^{\circ}C$. At $0^{\circ}C$, it showed 70.9% of relative activity in comparison with 100%. The chitinase gene of KCTC10714 was cloned using inverse PCR cloning method. KCTC10714 chitinase gene was designated as chi21702. The ORF of chi21702 consisted of 1,449 bp (482 amino acid), and contained ChtBD3 (a chitin/cellulose binding domain) and an active site for chitinase family 18.

  • PDF

Purification and Characterization of Chitinase from a Marine Bacterium, Vibrio sp. 98CJ11027

  • Park, Shin-Hye;Lee, Jung-Hyun;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.224-229
    • /
    • 2000
  • Chitin-degrading marine bacterial strain 98CJ11027 was isolated from bryozoa from the coastal area of Cheju Island, Korea, and identified as a member of the genus Vibrio. The molecular mass of the main extracellular chitinase (chitinase I), purified from strain 98CJ11027, was estimated to be 98 kDa. The optimal condition for chitinase I activity is pH 6.0 and 45$^{\circ}C$. The activity was inhibited by Fe$\^$+2/ and Cu$\^$+2/. Chitinase I displayed the hydrolysis type of chitobiosidase and catalyzed reversed hydrolysis leading to the synthesis of tetraacetylchitotetraose.

  • PDF

Isolation and Properties of a Protein, RCG-2, Having Chitinase, ${\beta}-1,3-Glucanase$ and Lysozyme Activities from Rice Leaves (Chitinase, ${\beta}-1,3-glucanase$ 및 lysozyme 효소활성을 보유한 벼잎 산성단백질 RCG-2)

  • Um, Sung-Yon;Kim, Su-Il
    • Applied Biological Chemistry
    • /
    • v.37 no.1
    • /
    • pp.49-55
    • /
    • 1994
  • An acidic protein, RCG-2, containing chitinase and ${\beta}-1,3-glucanase$ activity conccurrently was purified from rice leaves by chromatofocusing and gel slicing. The purified enzyme gave a single band on polyacrylamide gel electrophoresis and its molecular weight was appeared to be 29.7 kd using SDS-PAGE. This enzyme also had lysozyme activity. The optimal temperature for both enzyme activities was $40^{\circ}C$, optimal pH were 4.0 for chitinase activity and 7.0 for ${\beta}-1,3-glucanase$ activity. $K_M$ and $V_{max}$ values for chitinase were 7.86 mM and $0.025\;{\mu}M/min.$, and those for ${\beta}-1,3-glucanase$ were 5.95 mM and $0.16\;{\mu}M/min.$ respectively. TLC analysis of the enzyme hydrolysates of chitooligosaccharides indicated that this enzyme acts as endochitinase.

  • PDF

Characterization of Chitinase in Oak Tissues and Changes in Its Activity Related to Water Stress and Inoculation with Hypoxylon atropunctatum

  • Chun, Se-Chul;Fenn, Patrick;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.144-151
    • /
    • 1999
  • Chitinase activities from Shumard oak tissues were determined to study changes in chitinase activities related to water stress. The enzyme extracted in sodium acetate buffer (0.1M, pH 4.5) was assayed by a colorimetric method. In addition, the fungal hyphae of Hypoxylon atropunctatum in xylem tissues of oak were observed through scanning electron microscopy. The enzyme in oak tissues was mainly endochitinase, and optimum pH for enzyme activity was 5. Specific chitinase activities from both of stems held under high relative humidity (ranges of 0.63-1.11 pKatal/$\mu\textrm{g}$ of protein) and stems held under low relative humidity (ranges of 0.41-0.99 pKatal/$\mu\textrm{g}$ of protein) were significantly increased following fungal inoculation with H. atropunctatum. However, there was no significant difference in chitinase activities between tissues held under high and low humidities, which might be due to fungal chitinase. Scanning electron microscopy showed holes in fungal hyphae in the xylem tissues of stems held under high humidity but not in the stems held under ow humidity, suggesting that hyphae might be hydrolyzed by plant hydolases such as chitinase.

  • PDF

Cloning and Expression of a Chitinase Gene from Thermoactinomyces vulgaris KFB-C100

  • Yooh, Ho-Geun;Kim, Hee-Yun;Lim, Young-Hee;Cho, Hong-Yon
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.560-567
    • /
    • 1998
  • We have found that Thermoactinomyces vulgaris KFB-Cl00 produces a chitinase. The optimum temperature and pH of the enzyme activity were $55^{\circ}C$ and 6.5. The enzyme was stable after heat treatment at $80^{\circ}C$ for 30 min and stable in acidic and basic conditions (PH 6.0~11.0). The thermostable endo-chitinase from Thermoactinomyces vulgaris KFB-C100 was cloned into the plasmid pBR322 by using E. coli DH5$\alpha$ as a host strain. The positive clone carrying a recombinant plasmid (PKCHI23) with a 4.1-kb fragment containing the chitinase gene was found. The recombinant plasmid was analyzed to determine the essential region for chitinase activity and obtained a 2.3-kb fragment, which was sub cloned into pTrc99A using the PstI and SalI sites to construct pTrc99A/pKCHI23-3. The resulting plasmid exerted high chitinase activity upon transformation of E. coli XL1-Blue cells. Chitinase was overproduced 14 times more in the clone cells than in the wild-type cells and the enzyme was purified to homogeneity. The purified enzyme showed the similar properties as the native chitinase from T. vulgaris in terms of molecular weight and substrate specificity. The catalytic action of the cloned enzyme was an endo type, producing chitobiose as a major reaction product.

  • PDF

Production and Some Properties of Chitinolytic Enzymes by Antagonistic Bacteria (길항세균들이 생산하는 Chitin 분해효소의 특성)

  • 박서기;이효연;허정원
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.258-264
    • /
    • 1995
  • Production and some properties of chitinolytic enzymes were investigated by 80% ammonium sulfate precipitates (crude enzymes) from culture supernatant of antagonistic bacteria, Chromobacterium violaceum strain C-61 and strain C-72, Aeromonas hydrophila, Aeromonas caviae, and Serratia marcescens. The maximum production of chitinase was obtained from the 3-day culture at 28$^{\circ}C$ in C. violaceum stains, the 6-day culture in S. marcescens, and the 2-day culture in A. hydrophila and A. caviae. In the optimum culture periods, chitinase activity of C. violaceum strains C-61 was 1.5, 5.5, 12.0 and 11.3 times higher than those of strain C-72, S. marcescens, A. hydrophila and A. caviae, respectively. However, N,N'-diacetylchitobiase activity was 3.2 times higher in S. marcescens than in C. violaceum strain C-61, and that of Aeromonas spp.was very low. On gels containing glycol chitin, chitinase of C. violaceum strains showed four isoforms of 54-, 52-, 50- and 37-kDa, whereas there were four isoforms of 58-, 52-, 48- and 38-kDa in S. arcescens, three isoforms of 70-, 58- and 54-kDa in A. hydrophila and six isoforms of 90-, 79-, 71-, 63-, 58- and 38-kDa in A. caviae. The chitinase of C. violaceum strain C-61 was most active at pH 7.0 and at 5$0^{\circ}C$ and was stable in ranges of pH 5.0~10.0 for 2 hours and of 0~5$0^{\circ}C$ for 30 min.

  • PDF

Purification and Characterization of Extracellular Chitinase Produced by Marine Bacterium, Bacillus sp. LJ-25

  • Lee, Jung-Suck;Joo, Dong-Sik;Cho, Soon-Yeong;Ha, Jin-Hwan;Lee, Eung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.307-311
    • /
    • 2000
  • Abstract Extracellular chitinase was purified from the culture liquid of the marine bacterium, Bacillus sp. LJ-25 , and its enzymatic properties were examined. The purified chitinase exhibited a single band on SDS-PAGE and the molecular weight was estimated to be approximately 50 kDa. The optimum pH and temperature for the enzymatic activity were 7.0 and $35^{\circ}C$, respectively. The activity of the chitinase was strongly inhibited by $Zn^{2+}$ and slightly inhibited by $Ba^{2+},{\;}Co^{2+},{\;}Mn^{2+},{\;}and{\;}Cu^{2+}$. The purified chitinase did not hydrolyze $p-nitrophenolN-acetyl-{\bata}-D-glucosaminide{\;}(GlcNAc)_2$ and Micrococcus lysodeikticus cells, which are known to be the substrates for exo-type chitinase. Among the hydrolyzates of colloidal chitin, $(GlcNAc)_2$ was in the highest concentration with small amounts of GlcNAc and $(GlcNAc)_3$..

  • PDF

Induction of intercellular chitinase isozymes in bean and soybean leaves under stress (강낭콩과 대두 잎에서 세포간액 키틴분해효소의 분포와 유도)

  • Park, Ro-Dong;Cho, Yu-Young;Jhon, Deok-Young
    • Applied Biological Chemistry
    • /
    • v.37 no.4
    • /
    • pp.255-258
    • /
    • 1994
  • Using the enzyme activity staining, we studied the induction and distribution of chitinase isozymes, pathogenesis-related proteins, in intercellular fluids of bean and soybean leaves under stress conditions. The chitinase in intercellular fluids was barely detected in healthy plant leaves. By treatment of ethylene, pathogen (Fusarium oxysporum), or wounding, only 34 kD intercellular endochitinase was induced in bean leaves, while 30 kD and 36 kD intercellular endochitinases were induced in soybean leaves.

  • PDF

Effects of Organic Nutrients on Chitinase Production in Minimal Media (배양액중의 유기영양물이 Chitinase 생산에 미치는 영향)

  • Jang, Ji-Yun;Kim, In-Cheol;Jang, Hae-Chun
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.366-370
    • /
    • 2004
  • Four chitinase producing bacteria, Arthrobacter nicotinae CH4, Arthrobacter nicotinae CHI3, Arthrobacter sp. CH5 and Micrococcus sp. CH3, were isolated from small crabs and shrimps. We investigated the optimum medium condition for the production of enzyme and high cell mass. The preferable medium composition was as follows: colchitin 0.1 %(w/v), glycerol 0.25%(w/v) and yeast extract 0.05%(w/v) in minimal midium ($K_{2}HPO_{4}$ 0.7 g/l, $KH_{2}PO_{4}$ 0.3 g/l, $MgSO_{4}{\cdot}5H_{2}O$ 0.5 g/l, $FeSO_{4}}{\cdot}7H_{2}O$ 0.01 g/l, $ZnSO_{4}$ 0.001 g/l, $MnCI_2$ 0.001 g/l, pH 7.0). This cell culture medium could be used directly as sample for measuring chitinase activity. Because it hardly conreducing sugar such as glucose (blank value=0), the detected reducing sugar can be considered as a chitinase reaction product. The results can be used for easy preparation method for determination of enzyme activity and analysis of enzyme-substrate reaction in step of screening of chitinase producing bacteria.