• Title/Summary/Keyword: Chirped Waveform

Search Result 2, Processing Time 0.016 seconds

Study on the Chirped Waveform of the USPR Pulse using the Impulse Response of a Waveguide

  • Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.20-26
    • /
    • 2010
  • In ultrashort-pulse reflectometry (USPR), a chirped waveform transformed from the USPR source impulse signal via waveguide makes it possible to employ millimeter-wave mixers for the frequency up-conversion process. Consequently, the frequency bandwidth of the USPR system is sufficiently wide to cover a large portion of the electron density profile of the plasma. Some physical aspects of the chirped waveform, such as maximum amplitude and length, are critical factors to determine the performance of the system. In this paper, the propagation of the USPR impulse signal through a rectangular waveguide is numerically studied to derive the chirped waveform using the impulse response of the waveguide. The results of numerical computation show that the chirped waveform significantly depends on the waveguide cutoff frequency as well as the waveguide length.

Numerical Study on Frequency Up-conversion in USPR using MATLAB

  • Roh, Young-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.497-502
    • /
    • 2010
  • In this paper, the O-mode ultrashort-pulse reflectometry (USPR) millimeter-wave signals that propagate into the plasma and cover a frequency bandwidth of 33-158 GHz are examined numerically using MATLAB. Two important processes are involved in the computation: the propagation of the USPR impulse signal through a waveguide and the frequency up-conversion using millimeter-wave mixers. These mixers are limited to intermediate frequency signals that are less than 500 mV; thus, it is necessary to disperse the impulse signal into a chirped waveform using the waveguide. The stationary phase method is utilized to derive a closed-form formula for a chirped waveform under the assumption that the USPR impulse is Gaussian. In the process of frequency up-conversion, the chirped waveform is mixed with the mixer LO signal, and the lower frequency components of the RF signal are removed using high pass filters.