• Title/Summary/Keyword: Chirp sonar

Search Result 15, Processing Time 0.019 seconds

The geophysical survey in shallow water and transitional region

  • Ashida Yuzuru
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2002.09a
    • /
    • pp.1-15
    • /
    • 2002
  • In the present paper, the marine reflection seismic survey, the survey using Chirp sonar, the detail topographic survey by narrow multi-beam sounding machine, the sea bottom geological condition survey by side-scan sonar, the sea bottom sampling by core sampler and the positioning by DGPS as the geophysical survey in shallow and transitional region are introduced by placing emphasis on hardware configuration.

  • PDF

Geoacoustic Modeling for Analysis of Attenuation Characteristics using Chirp Acoustic Profiling data (광역주파수 음향반사자료의 감쇠특성 분석을 위한 지질음향모델링 기법 연구)

  • Chang Jae-Kyeong;Yang Sung-Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.202-208
    • /
    • 1999
  • We introduce a new acoustic parameter for the classification of seafloor sediments from chirp sonar acoustic profiling data. The acoustic parameter is defined as a derivative of the unwrapped phase of the Fourier transform of acoustic profiling data. Consequently, it represents the characteristics of attenuation by dissipative dispersion in sediments. And we estimated acoustic properties by geoacoustic modeling using Chirp data obtained from the different sedimentary facies. Our classification results, when compared with the results of analysis of sampled sediments, show that the acoustic parameter discriminates sedimentary facies and bottom hardness. Thus the method in this paper is expected to be an effective means of geoacoustic modeling of the seafloor.

  • PDF

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF

A Mitigation of Multipath Ranging Error Using Non-linear Chirp Signal

  • Kim, Jin-Ik;Heo, Moon-Beom;Jee, Gyu-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.658-665
    • /
    • 2013
  • While the chirp signal is extensively used in radar and sonar systems for target decision in wireless communication systems, it has not been widely used for positioning in indoor environments. Recently, the IEEE 802.15.4a standard has adopted the chirp spread spectrum (CSS) as an underlying technique for low-power and low-complexity precise localization. Chirp signal based ranging solutions have been established and deployed but their ranging performance has not been analyzed in multipath environments. This paper presents a ranging performance analysis of a chirp signal and suggests a method to suppress multipath error by using a type of non-linear chirp signal. Multipath ranging performance is evaluated using a conventional linear chirp signal and the proposed non-linear chirp signal. We verify the feasibility of both methods using two-ray multipath model simulation. Our results demonstrate that the proposed non-linear chirp signal can successfully suppress the multipath error.

Performance Characteristics of a Chirp Data Acquisition and Processing System for the Time-frequency Analysis of Broadband Acoustic Scattering Signals from Fish Schools (어군에 의한 광대역 음향산란신호의 시간-주파수 분석을 위한 chirp 데이터 수록 및 처리 시스템의 성능특성)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.2
    • /
    • pp.178-186
    • /
    • 2018
  • A chirp-echo data acquisition and processing system was developed for use as a simplified, PC-based chirp echo-sounder with some data processing software modules. The design of the software and hardware system was implemented via a field-programmable gate array (FPGA). Digital signal processing algorithms for driving a single-channel chirp transmitter and dual-channel receivers with independent TVG (time varied gain) amplifier modules were incorporated into the FPGA for better real-time performance. The chirp-echo data acquisition and processing system consisted of a notebook PC, an FPGA board, and chirp sonar transmitter and receiver modules, which were constructed using three chirp transducers operating over a frequency range of 35-210 kHz. The functionality of this PC-based chirp echo-sounder was tested in various field experiments. The results of these experiments showed that the developed PC-based chirp echo-sounder could be used in the acquisition, processing and analysis of broadband acoustic echoes related to fish species identification.

Classifying Seafloor Sediments Using a Probabilistic Neural Network (확률 신경망에 의한 해저 저질의 식별)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.51 no.3
    • /
    • pp.321-327
    • /
    • 2018
  • To classify seafloor sediments using a probabilistic neural network (PNN), the frequency-dependent characteristics of broadband acoustic scattering, which make it possible to qualitatively categorize seabed type, were collected from three different geographical areas in Korea. The echo data samples from three types of seafloor sediment were measured using a chirp sonar system operating over a frequency range of 20-220 kHz. The spectrum amplitudes for frequency responses of 35-75 kHz were fed into the PNN as input feature parameters. The PNN algorithm could successfully identify three seabed types: mud, mud/shell and concrete sediments. The percentage probabilities of the three seabed types being correctly classified were 86% for mud, 66% for mud/shell and 72% for concrete sediment.

A Digital Bathymetric Model combining Multi Beam Echo Sounder and Sidescan Sonar

  • Park, Jo-Seph;Kim, Hik-Il
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.330-330
    • /
    • 2002
  • The combination of Multi-Beam Echo Sounder swath bathymetry and high-resolution towed Sidescan sonar provides a powerful method of examination about hydrographic survey results. In this paper, we investigate the fast method of 3D bathymetric reconstruction with the Digital Sidescan sonar(Benthos SIS 1500) and Shallow Multi-Beam Echo Sounder(Reson Seabat 8125). The Seabat 8125 is a 455KHz high resolution focused Multibeam echo sounder(MBES) system which measures the relative water depth across a wide swath perpendicular to a vessel's track. The Benthos SIS1500 is a chirp(nominal fq. 200KHz) sonar which map the topographical features & sediment texture of ocean bottom using backscattered amplitude. We generates the very large 3D bathymetric texture mapping model with the Helical System's HHViewer and describes additional benefits of combining MBES and Sidescan Sonar imagery, the removal of geometric distortions in the model and a deterministic sounding noise.

  • PDF

Inversion of Acoustical Properties of Sedimentary Layers from Chirp Sonar Signals (Chirp 신호를 이용한 해저퇴적층의 음향학적 특성 역산)

  • 박철수;성우제
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.32-41
    • /
    • 1999
  • In this paper, an inversion method using chirp signals and two near field receivers is proposed. Inversion problems can be formulated into the probabilistic models composed of signals, a forward model and noise. Forward model to simulate chirp signals is chosen to be the source-wavelet-convolution planewave modeling method. The solution of the inversion problem is defined by a posteriori pdf. The wavelet matching technique, using weighted least-squares fitting, estimates the sediment sound-speed and thickness on which determination of the ranges for a priori uniform distribution is based. The genetic algorithm can be applied to a global optimization problem to find a maximum a posteriori solution for determined a priori search space. Here the object function is defined by an L₂norm of the difference between measured and modeled signals. The observed signals can be separated into a set of two signals reflected from the upper and lower boundaries of a sediment. The separation of signals and successive applications of the genetic algorithm optimization process reduce the search space, therefore improving the inversion results. Not only the marginal pdf but also the statistics are calculated by numerical evaluation of integrals using the samples selected during importance sampling process of the genetic algorithm. The examples applied here show that, for synthetic data with noise, it is possible to carry out an inversion for sedimentary layers using the proposed inversion method.

  • PDF

Calibration of a Chirp Sonar System Using Seven Tungsten Carbide Spheres of Different Sizes (크기가 다른 7개의 탄화 텅스텐 구를 이용한 Chirp 소너 시스템의 교정)

  • Lee, Dae-Jae;Lee, Kyounghoon;Jung, Bong-Kyu;Kang, Hee-Young
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.2
    • /
    • pp.207-217
    • /
    • 2022
  • The accurate calibration of broadband echo sounders is essential for providing high quality acoustic information for fisheries applications. The increased range resolution of broadband echo sounder systems improves the detection and characterization of targets near boundaries, such as fish near the seabed. Most echo sounder systems are calibrated using tungsten-carbide (WC) spheres. For accurate calibration, it is necessary to select WC spheres of optimized diameters used frequently to calibrate echo sounder systems. For these purposes, the measured and simulated target strength (TS) data for seven WC spheres of different sizes were compared across a bandwidth of 100-200 kHz. The frequency-dependent TS pattern for the specular wave measured from two WC spheres using the fractional Fourier transform was also estimated and analyzed. Comparative results are presented for all the spheres and the best average precision of 0.15 dB was obtained for the 22 mm WC sphere.

Comparison of the Model-predicted and Measured Target Strength of Cuttlebones from Golden Cuttlefish Sepia esculenta (갑오징어의 갑에 대한 모델 예측과 측정 반사강도의 비교)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.2
    • /
    • pp.209-217
    • /
    • 2020
  • The purpose of this study was to compare the model-predicted and experimentally measured target strength (TS) of golden cuttlefish Sepia esculenta cuttlebones. Ultrasonic signals used to estimate frequency-dependent TS and the speed of sound in cuttlebones were measured by pulse-echo and through-transmission techniques, using a chirp sonar system and an ultrasonic pulser/receiver system under controlled laboratory conditions. The model appeared to slightly underestimate the predicted TS values in the frequency range of 100-160 kHz. However, there was good agreement between the predicted and measured TS values in the frequency range of 160-200 kHz. The significant similarity between the model-predicted and experimentally measured TS values supports the use of the Kirchhoff-ray mode (KRM) model for acoustic scattering analysis of cuttlebones. Accordingly, we concluded that the KRM model can be used as a tool to evaluate the frequency-dependent variability of TS due to changes in golden cuttlefish swimming depth.