• Title/Summary/Keyword: Chiral polyaniline

Search Result 2, Processing Time 0.014 seconds

Influence of Electrochemical Polymerization Temperature on the Morphology of Binary-doped Chiral Polyaniline (전기화학적 중합온도가 Binary 도핑된 키랄 Polyaniline 모폴로지에 미치는 영향)

  • Kim, Eunok;Kim, Young-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.456-462
    • /
    • 2014
  • Binary-doped conducting chiral polyaniline (PAni) was synthesized by electrochemical polymerization of aniline at low-temperature ($0^{\circ}C$) and room-temperature (RT) conditions. (+)-Camphorsulfonic acid (CSA) and hydrochloric acid (HCl) were used as a binary dopant. Formation of the binary-doped PAni rather than a mixture of the corresponding single-doped PAni was confirmed by cyclic voltammogram, FT-IR and circular dichroism spectra. The temperature influenced the electrochemical behavior and doping level, thus determining the crystallinity and morphology of the PAni. However, among other results, morphology of the PAni is found to be most strongly depends on the polymerization temperature. With increased temperature from the initial state to RT, morphology of the PAni changed from fibrous to short-fibrous structure. The sheet resistance of the PAni films on an ITO was measured by using four-point probe dc method.

Effects of Binary Doping on Chiroptical, Electrochemical, and Morphological Properties of Chiral Polyaniline

  • Kim, Eunok
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.5
    • /
    • pp.423-428
    • /
    • 2015
  • (1S)-(+)-10-camphorsulfonic acid (CSA) and HCl were used together as a binary dopant in the electrodeposition of polyaniline (PAni). (+)-CSA and HCl were added in different mole ratios (9:1 and 6:4). (+)-CSA-doped and binary-doped PAni exhibited markedly different ultraviolet-visible and circular dichroism spectral characteristics due to differences in their conformations. Distinct helical structures are observed in the scanning electron microscopy images of (+)-CSA-doped PAni. The X-ray diffraction pattern of (+)-CSA-doped PAni exhibited remarkably higher crystallinity than that of HCl-doped PAni which is associated with the helical ordering along the polymer chains. The conformational changes due to the binary doping in chiral PAni had a significant effect on its chiroptical and electrochemical properties, morphology, and crystallinity, thus determined its conductivity.