• Title/Summary/Keyword: Chiral Separation

Search Result 194, Processing Time 0.023 seconds

Resolution of Aryl α-Aminoalkyl Ketones on a Doubly Tethered Liquid Chromatographic Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid

  • Jin, Kab-Bong;Kim, Hee-Jin;Hyun, Myung-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.5
    • /
    • pp.751-755
    • /
    • 2011
  • A doubly tethered chiral stationary phase (CSP) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid was applied to the resolution of various aryl ${\alpha}$-aminoalkyl ketones with the use of 80% ethanol in water containing 10 mM sulfuric acid as a mobile phase. The chiral resolution was quite successful, the separation factors (${\alpha}$) and the resolutions ($R_S$) being in the range of 1.39-2.05 and 3.18-5.22, respectively. The separation factors (${\alpha}$) on the doubly tethered CSP were slightly worse than those on the corresponding singly tethered CSP. However, the resolutions ($R_S$) on the doubly tethered CSP were generally greater than those on the corresponding singly tethered CSP. The chromatographic behaviors for the resolution of aryl ${\alpha}$-aminoalkyl ketones on the doubly tethered CSP were demonstrated to be dependent on the type and the content of the organic and acidic modifiers in aqueous mobile phase and the column temperature.

Enantioselective Pharmacokinetics of Carvedilol in Human Volunteers

  • Phuong, Nuyen-Thi;Lee, Beam-Jin;Choi, Jung-Kap;Kang, Jong-Seong;Kwon, Kwang-il
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.973-977
    • /
    • 2004
  • Carvedilol is administered as a racemic mixture of the R(+)- and S(-)-enantiomers, although they exhibit different pharmacological effects. To investigate the stereoselective pharmacoki-netics, the enantiomeric separation of carvedilol in human plasma was undertaken using capil-lary electrophoresis (CE). Resolution of the enantiomers was achieved using 2-hydoxypropyl-$\beta$-cyclodextrin as the chiral selector. Phosphate buffer (50 mM, pH 4.0) containing 10 mM of 2-hydoxypropropyl-$\beta$-cyclodextrin was used as electrolytic buffer. Achiral separation was carried out with the same electrolytic buffer without chiral selector. Following a single oral administra-tion of 25-mg carvedilol to 11 healthy, male volunteers, stereoselective pharmacokinetic analy-sis was undertaken. The maximum plasma concentrations ( $C_{max}$) were 48.9 and 21.6 ng/mL for (R)-carvedilol and (S)-carvedilol, respectively, determined by the chiral method. The profiles of the plasma concentration of (RS)-carvedilol showed $C_{max}$ of 71.5, 72.2, and 73.5 ng/mL, as determined by the CE, HPLC/FD methods and calculations from the data of the chiral method, respectively.y.y.

Resolution of β-Amino Acids on a Chiral Stationary Phase Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxilic Acid without Extra Free Aminopropyl Groups on Silica Surface

  • Hyun, Myung- Ho;Choi, Hee-Jung;Kang, Bu-Sung;Tan, Guang-Hui;Cho, Yoon-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1775-1779
    • /
    • 2006
  • A liquid chromatographic chiral stationary phase (CSP) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxilic acid without extra free aminopropyl groups on silica surface has been demonstrated to be quite effective for the resolution of various $\beta$-amino acids. The retention factors ($k_1$) for the resolution of $\beta$-amino acids on the CSP were quite large and the large retention factors might be quite attractive along with the reasonable separation factors ($\alpha$) for preparative scale enantioselective chromatography. The large retention factors on the CSP were found to be reduced effectively by adding ammonium ion to mobile phase without sacrificing the chiral recognition efficiency of the CSP. Consequently, the CSP is also quite applicable for use in analytical enantioselective chromatography.

Preparation of A New HPLC Chiral Stationary Phase from (S)-Naproxen and Application in Elucidating Chiral Recognition Models

  • 현명호;김광자;정경규
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1085-1089
    • /
    • 1997
  • A new HPLC chiral stationary phase (CSP 3) has been prepared by connecting N-phenyl N-propyl amide of (S)-naproxen to silica gel through the 6-methoxy-2-naphthyl group of (S)-naproxen. The new CSP has been applied in resolving a homologous series of N-(3,5-dinitrobenzoyl)-α-amino acid esters and a homologous series of N-(3,5-dinitrobenzoyl)-α-(4-alkylphenyl)alkylamines. The separation factors, α, for resolving a homologous series of N-(3,5-dinitrobenzoyl)-α-amino esters and a homologous series of N-(3,5-dinitrobenzoyl)-α-(4-alkylphenyl)alkylamines on the new CSP have been found to remain almost constant throughout the wide range of the length of the alkyl substituent of the analytes while those on the previously reported CSPs (CSP 1 and 2) which were prepared by connecting N-phenyl N-propyl amide of (S)-naproxen to silica gel through the N-propyl group increase or decrease continuously. These results are concluded to support the chiral recognition models which utilize the intercalation of the alkyl substituent of the racemic analytes between the adjacent strands of CSP 1 or 2 to rationalize the increasing or decreasing trends of separation factors.

The Influence of Temperature, Ultrasonication and Chiral Mobile Phase Additives on Chiral Separation: Predominant Influence of β-Cyclodextrin Chiral Mobile Phase Additive Under Ultrasonic Irradiation

  • Lee, Jae Hwan;Ryoo, Jae Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4141-4144
    • /
    • 2012
  • This paper introduces a technique for resolving amino acids that combines the advantages of the conventional CSP (chiral stationary phase) method with the CMPA (chiral mobile phase additive) method. A commercially available chiral crown ether column, CROWNPAK CR(+), was used as the CSP and three cyclodextrins (${\beta}$-CD, ${\gamma}$-CD, HP-${\beta}$-CD) were used as the mobile phase additives. Chromatographic resolution was performed at $25^{\circ}C$ and $50^{\circ}C$ with or without sonication. A comparison of the chromatographic results under ultrasonic conditions with those under non-ultrasonic conditions showed that ultrasound decreased the elution time and enantioselectivity at all temperatures. In the case of the ${\beta}$-CD mobile phase additive, the elution time and enantioselectivity under ultrasonic condition were significantly higher than under non-sonic condition at all temperatures. Commercially available Chiralpak AD, Whelk-O2 and Pirkle 1-J columns were used as CSPs to examine more meticulously the effects of ultrasonication and temperature on the optical resolution. The optical resolution of some chiral samples analyzed at $25^{\circ}C$ and $50^{\circ}C$ with or without sonication was compared. As in the previous case, the enantioselectivity was lower at $25^{\circ}C$ but similar enantioselectivity was observed at $50^{\circ}C$.

Efficient Immobilization of Polysaccharide Derivatives as Chiral Stationary Phases via Copolymerization with Vinyl Monomers

  • Chen, Xiaoming;Okamoto, Yoshio;Yamamoto, Chiyo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.134-141
    • /
    • 2007
  • The direct chromatographic separation of enantiomers by chiral stationary phases (CSPs) has been extensively developed over the past two decades, and has now become the most popular method for the analytical and preparative separations of enantiomers. Polysaccharide derivatives coated onto silica gel, as CSPs, playa significantly important role in the enantioseparations of a wide range of chiral compounds using high-performance liquid chromatography (HPLC). Unfortunately, the strict solvent limitation of the mobile phases is the main defect in the method developments of these types of coated CSPs. Therefore, the immobilization of polysaccharide derivatives onto silica gel, via chemical bonding, to obtain a new generation of CSPs compatible with the universal solvents used in HPLC is increasingly important. In this article, our recent studies on the immobilization of polysaccharide derivatives onto the silica gel, as CSPs, through radical copolymerization with various vinyl monomers are reported. Polysaccharide derivatives, with low vinyl content, can be efficiently fixed onto silica gel with high chiral recognition.

Separation of D and L Amino Acids by High-Performance Liquid Chromatography

  • Lee, Sun-Haing;Ryu, Jae-Wook;Park ,Kyoung-Sug
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.1
    • /
    • pp.45-50
    • /
    • 1986
  • Separation of optical isomers of some derivatives of amino acids by reversed-phase HPLC has been accomplished by adding a chelate of an optically active amino acid to copper(Ⅱ) to the mobile phase. Cu(Ⅱ) complexes of L-proline and L-hydroxyproline in the mobile phase showed different degrees of separation. Optical isomers of DNS derivatives of amino acids are selectively separated, but those of several other derivatives are not at all. The kinds of buffer agents, the pH, and the concentrations of acetonitrile and the Cu(Ⅱ) ligand all affect the separations. The elution behavior between D and L DNS-amino acids appears to depend on the alkyl side chain of the amino acids. A chromatographic mechanism is proposed that is based on a stereospecificity of the formation of ternary complexes by the D, L-DNS-amino acids and the chiral additive associated with the stationary phase. The steric effects of the ligand exchange reactions are related with the feasibility of cis and/or trans attack of the amino acids to the binary chiral chelate retained on the stationary phase.

Enantiomeric Separation of Amino Acids Using N-alkyl-L-proline Coated Stationary Phase

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.285-289
    • /
    • 1992
  • Enantiomeric separation of underivatized amino acids using N-alkyl-L-proline (octyl, dodecyl or hexadecyl) coated HPLC has been accomplished. The anchoring N-alkyl groups of L-proline provides a permanent adsorption of there solving chiral agent on the hydrophobic interface layer of a reversed phase. The factors controlling retention and enantioselectivity such as the Cu(II) concentration, pH of the eluent, the type and concentration of organic modifier in the hydroorganic eluent, and extent of coating were examined. The elution orders between D- and L-amino acids were consistent, L-forms eluting first, except histidine and asparagine. The extremely high enantioselectivity $(\alpha$ upto 13 for proline) is observed. The retention mechanism for the chiral separation can be illustrated by a complexation and hydrophobic interaction.

Developing Trends of the Chiral Drug Separation and Analysis Technology by using Molecular Recognition (분자인식 기법에 의한 키랄 의약품 분리 분석기술 개발동향)

  • Park, Gyung Hee;Lee, Yo-Han;Chang, Sang Mok;Kim, Woo-Sik;Kim, Jong-Min
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.75-81
    • /
    • 2016
  • As the quality of life has improved, the desire for the safety and quality of the foods and drugs has been gradually increasing. For safety and quality management in foods, drugs, health management, agriculture, environmental conservation, and the industrial fields, the demand for quickly and accurately measuring various chemicals has been increasing. As well, the desire for self-diagnosis of one's own health state and self-examining the safety of environment has been gradually increasing. Optical Isomers can have very different physiological effects on human beings. One isomer can exhibit desirable pharmacological, pharmacodynamic, pharmacokinetic and physiological properties, while the other isomer can exhibit undesirable and toxic properties toward living organisms, especially human beings. And they can exhibit different activities in chemical and biotechnological processes. Although the majority of commercially available drugs are now both synthetic and chiral materials, a most chiral drugs are still marketed as racemic drugs. Thus, to avoid possible undesirable side effects from chiral drugs, more effective methods for separating and recognizing chiral compounds are urgently needed. In this report, we investigated the overall developing trends of the chiral drug separation and analysis technology by using molecular recognition.

Chiral Separation of Derivatized Racemic Alcohols on Substitued Cyclodextrin Stationary Phases by Capillary Gas Chromatography (모세관 기체 크로마토그래피에 의한 치환된 Cyclodextrin 정지상을 이용한 알코올 유도체의 키랄분리)

  • Lee, Sun-Haing;Seo, Yeong-Ju;Lee, Kwang-Pill
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.2
    • /
    • pp.94-102
    • /
    • 1995
  • S-Hydroxypropyl(PH) ${\beta}$-cyclodextrin(hydrophilic), dialkyl(DA)-cyclodextrin(hydrophobic), trifluoroacetyl(TA) ${\gamma}$-cyclodextrin(intermediate) stationary phases were used for gas chromatographic separation of racemic alcohols and their derivatives. All the alcohols used for this experiment were derivatived by using trifluoro acetic anhydride, acetic anhydride, or trichloro acetic anhydride. It is apparent that the enantioselectivity of the enantiomeric pairs was very dependent on the type of acylation reagent. The best experimental condition of optical resolution of the alcohols and their derivatives was different on the polarity of the solute molecules. The chiral separation was also studied depending on temperature, polarity of the column, and hydrogen bonding ability and steric effect between the alchols and CD stationary phase. The chiral recognition mechanism is dependent not upon the kinds of the chiral stationay phases but upon the derivatization of the racemic alchols.

  • PDF