• 제목/요약/키워드: Chip on glass

검색결과 176건 처리시간 0.031초

Optimized Digital Proportional Integral Derivative Controller for Heating and Cooling Injection Molding System

  • Jeong, Byeong-Ho;Kim, Nam-Hoon;Lee, Kang-Yeon
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1383-1388
    • /
    • 2015
  • Proportional integral derivative (PID) control is one of the conventional control strategies. Industrial PID control has many options, tools, and parameters for dealing with the wide spectrum of difficulties and opportunities in manufacturing plants. It has a simple control structure that is easy to understand and relatively easy to tune. Injection mold is warming up to the idea of cycling the tool surface temperature during the molding cycle rather than keeping it constant. This “heating and cooling” process has rapidly gained popularity abroad. However, it has discovered that raising the mold wall temperature above the resin’s glass-transition or crystalline melting temperature during the filling stage is followed by rapid cooling and improved product performance in applications from automotive to packaging to optics. In previous studies, optimization methods were mainly selected on the basis of the subjective experience. Appropriate techniques are necessary to optimize the cooling channels for the injection mold. In this study, a digital signal processor (DSP)-based PID control system is applied to injection molding machines. The main aim of this study is to optimize the control of the proposed structure, including a digital PID control method with a DSP chip in the injection molding machine.

Microarrays for the Detection of HBV and HDV

  • Sun, Zhaohui;Zheng, Wenling;Zhang, Bao;Shi, Rong;Ma, Wenli
    • BMB Reports
    • /
    • 제37권5호
    • /
    • pp.546-551
    • /
    • 2004
  • The increasing pace of development in molecular biology during the last decade has had a direct effect on mass testing and diagnostic applications, including blood screening. We report the model Microarray that has been developed for Hepatitis B virus (HBV) and Hepatitis D virus (HDV) detection. The specific primer pairs of PCR were designed using the Primer Premier 5.00 program according to the conserved regions of HBV and HDV. PCR fragments were purified and cloned into pMD18-T vectors. The recombinant plasmids were extracted from positive clones and the target gene fragments were sequenced. The DNA microarray was prepared by robotically spotting PCR products onto the surface of glass slides. Sequences were aligned, and the results obtained showed that the products of PCR amplification were the required specific gene fragments of HBV, and HDV. Samples were labeled by Restriction Display PCR (RD-PCR). Gene chip hybridizing signals showed that the specificity and sensitivity required for HBV and HDV detection were satisfied. Using PCR amplified products to construct gene chips for the simultaneous clinical diagnosis of HBV and HDV resulted in a quick, simple, and effective method. We conclude that the DNA microarray assay system might be useful as a diagnostic technique in the clinical laboratory. Further applications of RD-PCR for the sample labeling could speed up microarray multi-virus detection.

The Faulty Detection of COG Using Image Registration (이미지 정합을 이용한 COG 불량 검출)

  • JOO KISEE;Jeong Jong-Myeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제10권2호
    • /
    • pp.308-314
    • /
    • 2006
  • A line scan camera is applied to enhance COG(Chip On Glass) inspection accuracy to be measured a few micro unit. The foreign substance detection among various faulty factors has been the most difficult technology in the faulty automatic inspection step since COG pattern is very miniature and complexity. In this paper, we proposed two step area segmentation template matching method to increase matching speed. Futhermore to detect foreign substance(such as dust, scratch) with a few micro unit, the new method using gradient mask and AND operation was proposed. The proposed 2 step template matching method increased 0.3 - 0.4 second matching speed compared with conventional correlation coefficient. Also, the proposed foreign substance applied masks enhanced $5-8\%$ faulty detection rate compared with conventional no mask application method.

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads (미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk;Park, Young-Seok
    • Journal of the Korean Magnetics Society
    • /
    • 제22권5호
    • /
    • pp.173-177
    • /
    • 2012
  • The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.

A Study on the Bonding Performance of COG Bonding Process (COG 본딩의 접합 특성에 관한 연구)

  • Choi, Young-Jae;Nam, Sung-Ho;Kim, Kyeong-Tae;Yang, Keun-Hyuk;Lee, Seok-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제27권7호
    • /
    • pp.28-35
    • /
    • 2010
  • In the display industry, COG bonding method is being applied to production of LCD panels that are used for mobile phones and monitors, and is one of the mounting methods optimized to compete with the trend of ultra small, ultra thin and low cost of display. In COG bonding process, electrical characteristics such as contact resistance, insulation property, etc and mechanical characteristics such as bonding strength, etc depend on properties of conductive particles and epoxy resin along with ACF materials used for COG by manufacturers. As the properties of such materials have close relation to optimization of bonding conditions such as temperature, pressure, time, etc in COG bonding process, it is requested to carry out an in-depth study on characteristics of COG bonding, based on which development of bonding process equipment shall be processed. In this study were analyzed the characteristics of COG bonding process, performed the analysis and reliability evaluation on electrical and mechanical characteristics of COG bonding using ACF to find optimum bonding conditions for ACF, and performed the experiment on bonding characteristics regarding fine pitch to understand the affection on finer pitch in COG bonding. It was found that it is difficult to find optimum conditions because it is more difficult to perform alignment as the pitch becomes finer, but only if alignment has been made, it becomes similar to optimum conditions in general COG bonding regardless of pitch intervals.

Thermal Analysis of 3D package using TSV Interposer (TSV 인터포저 기술을 이용한 3D 패키지의 방열 해석)

  • Suh, Il-Woong;Lee, Mi-Kyoung;Kim, Ju-Hyun;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • 제21권2호
    • /
    • pp.43-51
    • /
    • 2014
  • In 3-dimensional (3D) integrated package, thermal management is one of the critical issues due to the high heat flux generated by stacked multi-functional chips in miniature packages. In this study, we used numerical simulation method to analyze the thermal behaviors, and investigated the thermal issues of 3D package using TSV (through-silicon-via) technology for mobile application. The 3D integrated package consists of up to 8 TSV memory chips and one logic chip with a interposer which has regularly embedded TSVs. Thermal performances and characteristics of glass and silicon interposers were compared. Thermal characteristics of logic and memory chips are also investigated. The effects of numbers of the stacked chip, size of the interposer and TSV via on the thermal behavior of 3D package were investigated. Numerical analysis of the junction temperature, thermal resistance, and heat flux for 3D TSV package was performed under normal operating and high performance operation conditions, respectively. Based on the simulation results, we proposed an effective integration scheme of the memory and logic chips to minimize the temperature rise of the package. The results will be useful of design optimization and provide a thermal design guideline for reliable and high performance 3D TSV package.

The design and FPGA implementation of a general-purpose LDI controller for the portable small-medium sized TFT-LCD (중소형 TFT-LCD용 범용 LDI 제어기의 설계 및 FPGA 구현)

  • Lee, Si-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • 제12권4호
    • /
    • pp.249-256
    • /
    • 2007
  • AIn this paper, a new desist of LDI controller IC for general purpose is proposed for driving the LDI(LCD Driver Interface) controller in $4{\sim}9$ inches sized portable small-medium TFT-LCD(Thin Film Transistor addressed -Liquid Crystal Display) panel module. The designed LDI controller was verified on the FPGA(Reld Programmable Gate Array) test board, and was made the interactive operation with the commercial TFT-LCD panel successfully. The purpose of design is that it is standardized the LDI controller's operation by one LDI controller for driving all TFT-LCD panel without classifying the panel vendor, and size. The main advantage for new general-purpose LDI controller is the usage for the desist of all panel's SoG(System on a Glass) module because of the design for the standard operation. And in the previous method, it used each LDI controller for every LCD vendor, and panel size, but because a new one can drive all portable small-medium sized panel, it results in reduction of LDI controller supply price, and manufacturing cost of AV(Audio Video) board and panel. In the near future, the development of SoG IC(Integrated Circuit) for manufacturing more excellent functional TFT-LCD panel module is necessary. As a result of this research, the TFT-LCD panel can make more small size, and light weight, and it results in an upturn of domestic company's share in the world market. With the suggested theory in this paper, it expects to be made use of a basic data for developing and manufacturing for the SoG chip of TFT-LCD panel module.

  • PDF

Microwave Sintering of Silver Thick Film on Glass Substrate (유리기판 위에 Ag 후막의 마이크로웨이브 소결)

  • Hwang, Seong-Jin;Veronesi, Paolo;Leonelli, Cristina;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.22-22
    • /
    • 2009
  • The silver thick film has been used in many industries such as display, chip, solar cell, automobile, and decoration with conventional heating. The silver thick film is fired with optimal time and temperature. However, decreasing the fabrication time is required due to high production power. Furthermore, there is a problem that silver in electrode is diffused throughout any substrates. For inhibiting the Ag diffusion and long fabrication time we considered a microwave heating. We investigated firing of silver thick film with conventional and microwave heating. The temperature of substrate was measured by thermal paper and the temperature of substrate was under $100\;^{\circ}C$ The shrinkage of electrode was measured with optical microscopy and optical profilometry. The shrinkage of electrode heat treated with microwave for 5min was similar to the that fired by the conventional heating for several hours. After firing by two types of heating, the diffusion of silver was determined using a optical microscope. The microstructure of sintered silver thick film was observed by SEM. Based on our results, the microwave heating should be a candidate heating source for the fabrication electronic devices in terms of saving the tact time and preventing the contamination of substrate.

  • PDF

Wafer Level Packaging of RF-MEMS Devices with Vertical Feed-through (수직형 Feed-through 갖는 RF-MEMS 소자의 웨이퍼 레벨 패키징)

  • Park, Yun-Kwon;Lee, Duck-Jung;Park, Heung-Woo;kim, Hoon;Lee, Yun-Hi;Kim, Chul-Ju;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제15권10호
    • /
    • pp.889-895
    • /
    • 2002
  • Wafer level packaging is gain mote momentum as a low cost, high performance solution for RF-MEMS devices. In this work, the flip-chip method was used for the wafer level packaging of RF-MEMS devices on the quartz substrate with low losses. For analyzing the EM (electromagnetic) characteristic of proposed packaging structure, we got the 3D structure simulation using FEM (finite element method). The electric field distribution of CPW and hole feed-through at 3 GHz were concentrated on the hole and the CPW. The reflection loss of the package was totally below 23 dB and the insertion loss that presents the signal transmission characteristic is above 0.06 dB. The 4-inch Pyrex glass was used as a package substrate and it was punched with air-blast with 250${\mu}{\textrm}{m}$ diameter holes. We made the vortical feed-throughs to reduce the electric path length and parasitic parameters. The vias were filled with plating gold. The package substrate was bonded with the silicon substrate with the B-stage epoxy. The loss of the overall package structure was tested with a network analyzer and was within 0.05 dB. This structure can be used for wafer level packaging of not only the RF-MEMS devices but also the MEMS devices.

Effect of Constituent Ration NiO, CuO and B-Bi-Zn Addition on the Permeabilities of Hexagonal-ferrite (NiO, CuO 조성비와 B-Bi-Zn 첨가가 Hexagonal-Ferrite의 투자율에 미치는 영향)

  • Jeong, Seung-U;Kim, Tae-Won;Jeon, Seok-Tae;Myeong, Tae-Ho;Myeong, Tae-Ho
    • Korean Journal of Materials Research
    • /
    • 제10권6호
    • /
    • pp.430-436
    • /
    • 2000
  • In this paper, we have studied the effect of constituent ratio NiO, CuO and doped with B-Bi-Zn on proper-ties(microstructure, density, shrinkage, permeability as a function of frequency, etc.) of hexagonal-ferrite for high fre- quency chip-inductor material about several GHz. The permeability were analyzed by impedance analyzer(100 kHz∼ 40 MHz) and network analyzed(30 MHz∼3 GHz). As a result of the characteristics. the B-Bi-Zn glass ceramic was used to lower the sintering temperature for additive as function of frequency from 100kHz to 1.8 GHz showed con-stant tends. The maximum imaginary value of complex permeability was observed near the resonance frequency of 2 GHz.

  • PDF