• Title/Summary/Keyword: Chinese Rapeseed Cultivars

Search Result 2, Processing Time 0.015 seconds

Ileal Amino Acid Digestibility in Different Cultivars of Chinese Rapeseed Meals for Growing-finishing Pigs

  • Pengbin, Xi;Li, Defa;Gong, Liming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1326-1333
    • /
    • 2002
  • Studies were conducted with nine barrows, average initial body weight $44.5{\pm}2.1kg$, fitted with a T-cannula at the distal ileum, to determine the apparent ileal (and true) digestibility (AID and TID) of CP and AA in different cultivars of rapeseed meals and soybean meal. The barrows were fed either a casein diet or one of eight corn starch-based semipurified diets, formulated to contain 17.0% CP (DM basis) with one of seven different cultivars of rapeseed meal or soybean meal as the sole source of dietary protein, according to a six-period, nine-treatment, incomplete Latin Square. Chromic oxide (0.5%) was used as a digestibility marker. The pigs were fed of 4% of body weight twice daily, at 08:00 and 20:00 h. Ileal digesta were collected at 2 h intervals daily from 5 d to 7 d. The AID or TID values of CP and most AA (Cysteine excluded) were significantly lower in the rapeseed meals than in soybean meal (p<0.05). There were significant differences in the AID or TID values of CP and AA among the seven different cultivars rapeseed meals (p<0.05); the seven rapeseed meals were arranged according to the size of the AA digestibility values of the rapeseed meals from the greatest to the least, as Zayou 59, Youyan 7, Ganyou 16, Qingyou 2, Huaza 3, Ningza 1 and Lianglou 586; differences in CP, AA, NDF and ADF contents in the rapeseed meals were mainly responsible for the variation in the AID or TID values of AA among rapeseed meals. The AID value of CP can be used as an index of the AID or TID values of most AA in rapeseed meals. However, the AID value of CP was less appropriate as a direct indicator of the AID or TID values for cysteine, methionine, tryptophan, phenylalanine and proline.

Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops (병 저항성 기반 십자화과 작물의 검은무늬병 관리)

  • Young Hee Lee;Su Min Kim;Seoung Bin Lee;Sang Hee Kim;Byung-Wook Yun;Jeum Kyu Hong
    • Research in Plant Disease
    • /
    • v.29 no.4
    • /
    • pp.363-376
    • /
    • 2023
  • Alternaria black spots or blights in cruciferous crops have been devastating diseases worldwide and led to economic losses in broccoli, Chinese cabbage, kale, radish, rapeseed, etc. These diseases are caused by different Alternaria spp., including A. brassicae, A. brassicicola and A. raphani transmitted from infected seeds or insect vectors. Efforts to excavate disease resistance traits of cruciferous crops against Alternaria black spots or blights have been demonstrated. Genetic resource of disease resistance was investigated in the wild relatives of cruciferous crops, and different cultivars were screened under different inoculation conditions. Development of the disease-resistant lines against Alternaria black spots or blights was also tried via genetic transformation of the cruciferous crops using diverse plant defence-associated genes. Plant immunity activated by pre-treatment with chemicals, i. e. β-amino-n-butyric acid and melatonin, was suggested for reducing Alternaria black spots or blights in cruciferous crops. The disease resistance traits have also been evaluated in model plant Arabidopsis originating from different habitats. Various plant immunity-related mutants showing different disease responses from wild-type Arabidopsis provided valuable information for managing Alternaria black spots or blights in cruciferous crops. In particular, redox regulation and antioxidant responses altered in the Alternaria-infected mutants were discussed in this review.