• Title/Summary/Keyword: Chinese $NO_x$ and $SO_2$ emissions

Search Result 5, Processing Time 0.019 seconds

Review of Shandong Peninsular Emissions Change and South Korean Air Quality (중국 산둥반도 배출량 변화와 한국 대기질의 연관성 검토)

  • Kim, Hyun Cheol;Kwon, Seulgi;Kim, Byeong-Uk;Kim, Soontae
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.356-365
    • /
    • 2018
  • While social networks have become very popular and powerful way of connecting people and sharing new information, they also effectively spread wrong or biased information to the public. We examine the so-called "Shandong peninsular rumor" that claims Chinese government is responsible for the increased air pollution in South Korea and Japan, by moving pollution-causing industries near Beijing to the Shandong peninsular which is close to South Korea. We demonstrate that the amounts of $NO_x$ and $SO_2$ emissions inferred by space-borne monitoring and regional air quality models show clear declining trends in past several years. We do not have any evidences to support the relation of Shandong peninsular emissions change to South Korean air quality.

Empirical Analysis on Determinants of Air Pollution in China (중국의 대기오염 배출 결정요인에 대한 경험적 분석)

  • Li, Dmitriy D.;Wang, Wen;Bae, Jeong Hwan
    • Environmental and Resource Economics Review
    • /
    • v.29 no.1
    • /
    • pp.23-45
    • /
    • 2020
  • The rapid economic growth has brought tremendous pressure on the environment and caused severe air pollution in China. This study empirically examines causes of air pollution in China. Panel-corrected standard errors procedure (PCSE) was used to analyze major determinants of increasing or reducing emissions of sulfur dioxide (SO2) and nitrogen oxides (NOX) in 30 Chinese provinces. The estimation results show that SO2 emission is mitigated as per capita regional GDP increases, but the relation between emission of NOX and per capita regional GDP is found to have an inverse N-shaped curve, which implies that emission of NOX is ultimately expected to decline with economic growth. As for increasing factors of air pollutants, electricity consumption is a significant common source of SO2 and NOX emissions. Moreover, the results show that increment of coal consumption significantly affects emission of SO2 while increase of natural gas consumption reduce emission of SO2. On the other side, investment in energy industry, and investment on treatment of waste gases are determinants of mitigating emissions of SO2, but have no impact on NOX. Consumption of diesel, truck ratio and number of vehicles increase emission of NOX. Meanwhile, higher precipitation rate is a common determinant of mitigating emissions of SO2 and NOX. Policy implications are suggested in the conclusion.

Analysis of Regional and Inter-annual Changes of Air Pollutants Emissions in China (중국 대기오염물질 배출의 시공간적 변화 분석)

  • Woo, Jung-Hun;Bu, Chanjong;Kim, Jinsu;Ghim, Young Sung;Kim, Younha
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.87-100
    • /
    • 2018
  • Fast economic growth and urbanization of China have been causing air pollution not only over its domestic but transboundary atmosphere. Recent high fine particle pollution episodes in China made the government move toward more stringent air pollution control policies - which are mostly fuel switching and emissions control. In this research, we tried to understand characteristics of Chinese emissions and their change by analyzing its emissions inventory by year, sector, and region. From the inter-comparison of existing bottom-up emission inventories, we found relatively good agreements (<20% difference) for $SO_2$ and $NO_x$, but 30% or more discrepancies for some pollutants. Inter-comparison with top-down $NO_x$ emissions estimates also showed 20~50% differences by year. The regional distribution and inter-annual changes of emissions revealed different stages of energy/fuel mix and policy penetration. Early increase of pollutants emissions in the eastern part of China might give strong influences to the Korean peninsular in early 2000s but, more stringent control in that region would help improving air pollution in Korea in near future.

Air Quality Improvement Scenario for China during the 13th Five-Year Plan Period

  • Tang, Qian;Lei, Yu;Chen, Xiaojun;Xue, Wenbo
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.1
    • /
    • pp.33-36
    • /
    • 2017
  • China is suffering from severe air pollution especially fine $PM_{2.5}$ pollution. In 2015, the annual average $PM_{2.5}$ concentration of the 338 municipal cities was $50{\mu}g/m^3$, 78% cities at or above the prefectural level failed to comply with the $PM_{2.5}$ concentration standards. The $13^{th}$ Five-Year Plan for National Economic and Social Development set the goal that the annual average concentration of $PM_{2.5}$ in the municipal cities which failed to attain the ambient air quality standards shall be decreased by 18% by 2020 (CCCPC, 2016). In this study, an air pollution control scenario during the $13^{th}$ Five-Year Plan period was proposed and the $SO_2$, $NO_x$ and PM emission reductions in response to different measures in 31 provincial-level regions mainland China by 2020 were estimated. The air quality in the target year (2020) was simulated using the WRF-CMAQ model. The results showed that by 2020, the emissions of $SO_2$, $NO_x$ and primary PM in mainland China will be reduced by 4.19 million tons, 3.94 million tons and 4.41 million tons, a drop of 23%, 21% and 25% respectively compared with that in 2015, and the annual average concentration of $PM_{2.5}$ will decrease by 19%. Coal-fired power plant contributes the most pollutant emission reduction.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.