• Title/Summary/Keyword: Chimera scheme

Search Result 24, Processing Time 0.022 seconds

Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models (2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석)

  • Kim Chang-Seong;Kim Jong-Am;No O Hyeon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

Development of a 2-dimensional Flow Solver using Hybrid Unstructured and Adaptive Cartesian Meshes (비정렬 및 적응 직교격자를 이용한 2차원 혼합격자계 유동해석 코드 개발)

  • Jung, M.K.;Kwon, O.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.294-301
    • /
    • 2011
  • A two-dimensional hybrid flaw solver has been developed for the accurate and efficient simulation of steady and unsteady flaw fields. The flow solver was cast to accommodate two different topologies of computational meshes. Triangular meshes are adopted in the near-body region such that complex geometric configurations can be easily modeled, while adaptive Cartesian meshes are, utilized in the off-body region to resolve the flaw more accurately with less numerical dissipation by adopting a spatially high-order accurate scheme and solution-adaptive mesh refinement technique. A chimera mesh technique has been employed to link the two flow regimes adopting each mesh topology. Validations were made for the unsteady inviscid vol1ex convection am the unsteady turbulent flaws over an NACA0012 airfoil, and the results were compared with experimental and other computational results.

  • PDF

UNSTEADY STAGING FLOW ANALYSIS USING MOVING GRID SYSTEM (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.43-47
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of forebody and aftbody with flow analysis using the Chimera grid scheme which is usually used for moving body simulations. As a result, the separation mechanism using forward jet well work in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

Unsteady Staging Plow Analysis Using Moving Grid (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.182-185
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of prebody and aftbody with flow analysis using Chimera grid scheme which is usually used for moving simulations. As a result, separation mechanism using forward jet well works in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

  • PDF