• 제목/요약/키워드: Chimera overlapping grid

검색결과 5건 처리시간 0.02초

주기 운동하는 마이크로플랩의 효과에 대한 수치적 연구

  • 정연규;현성윤;장근식;최성욱
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.387-390
    • /
    • 2006
  • Numerical study has been conducted in two dimensions about a NACA0012 airfoil with an oscillating microflap on the surface. We show that this microflap is effective in controlling the unsteady stall at high angles of attack. We solve the compressible Navier-Stokes equations for the Reynolds numbers with an extensible chimera grid fitted to the oscillatory microflap. For turbulent calculation, we adopt the SST $k-{\omega}$ model. We investigate the parametric effect of angle of attacks, Reynolds number, and the location where the microflap is installed.

  • PDF

2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석 (Incompressible/Compressible Flow Analysis over High-Lift Airfoils Using Two-Equation Turbulence Models)

  • 김창성;김종암;노오현
    • 한국전산유체공학회지
    • /
    • 제4권1호
    • /
    • pp.53-61
    • /
    • 1999
  • Two-dimensional, unsteady, incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. The compressible code involves a conventional upwind-differenced scheme for the convective terms and LU-SGS scheme for temporal integration. The incompressible code with pseudo-compressibility method also adopts the same schemes as the compressible code. Three two-equation turbulence models are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by predicting the flow around the RAE 2822 transonic airfoil and the NACA 4412 airfoil, respectively. In addition, both the incompressible and compressible code are used to compute the flow over the NLR 7301 airfoil with flap to study the compressible effect near the high-loaded leading edge. The grid systems are efficiently generated using Chimera overlapping grid scheme. Overall, the κ-ω SST model shows closer agreement with experiment results, especially in the prediction of adverse pressure gradient region on the suction surfaces of high-lift airfoils.

  • PDF

스마트무인기 파워 전기체 비정상 유동해석 (UNSTEADY FLOW SIMULATION FOR POWERED TILTROTOR UAV)

  • 최성욱;김재무
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.8-13
    • /
    • 2007
  • Unsteady flow simulation for the tiltrotor Smart UAV configuration was performed to investigate the powered rotor wake effect on aerodynamic characteristics. Calculations were performed to simulate various flow conditions based on different flight modes including hover, conversion and cruise. Three-dimensional compressible Navier-Stokes equation code were used for flow calculation and Chimera grid technique overlapping individually generated grids was employed. A dynamic grid method was adopted in simulation of the rotating blades. Flow calculations were also conducted for the un-powered case. Aerodynamic interaction between the rotor and airframe was investigated comparing three data sets from the un-powered, powered, and isolated rotor cases.

  • PDF

2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석 (Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models)

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF