• 제목/요약/키워드: Chimera 중첩격자 기법

검색결과 15건 처리시간 0.021초

보존적 중첩격자기법을 이용한 동적 플랩의 천이적 공력거동에 관한 수치적 연구 (Numerical Study on Transient Aerodynamics of Moving Flap Using Conservative Chimera Grid Method)

  • 최성욱;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Transient aerodynamic response of an airfoil to a moving plane-flap is numerically investigated using two-dimensional Euler equations with conservative Chimera grid method. A body moving relative to a stationary grid is treated by an overset grid bounded by a 'dynamic domain-dividing line' the concept of which is developed in this study. A conservative Chimera grid method with a dynamic domain-dividing line technique is applied and validated by solving the flowfield around circular cylinder moving supersonic speed. The unsteady and transient characteristics of the flow solver is also examined by computations of a oscillating airfoil and a ramp pitching airfoil respectively. The transient aerodynamic behavior of an airfoil with a moving plane-flap is analyzed for various flow conditions such as deflecting rate of flap and free stream Mach number.

  • PDF

HART II 로터-동체 모델의 CFD/CSD 연계해석과 동체효과 분석 (CFD/CSD COUPLED ANALYSIS FOR HART II ROTOR-FUSELAGE MODEL AND FUSELAGE EFFECT ANALYSIS)

  • 사정환;유영현;박재상;박수형;정성남;유영훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.343-349
    • /
    • 2011
  • A loosely coupling method is adopted to combine a computational fluid dynamics (CFD) solver and the comprehensive structural dynamics (CSD) code, CAMRAD II, in a systematic manner to correlate the airloads, vortex trajectories, blade motions, and structural loads of the HART I rotor in descending flight condition. A three-dimensional compressible Navier-Stokes solver, KFLOW, using chimera overlapped grids has been used to simulate unsteady flow phenomena over helicopter rotor blades. The number of grids used in the CFD computation is about 24 million for the isolated rotor and about 37.6 million for the rotor-fuselage configuration while keeping the background grid spacing identical as 10% blade chord length. The prediction of blade airloads is compared with the experimental data. The current method predicts reasonably well the BVI phenomena of blade airloads. The vortices generated from the fuselage have an influence on airloads in the 1st and 4th quadrants of rotor disk. It appeared that presence of the pylon cylinder resulted in complex turbulent flow field behind the hub center.

  • PDF

반실험적 기법 및 CFD 코드를 이용한 자유회전 테일핀을 갖는 커나드 조종 미사일에 관한 공력해석 (Aerodynamic Characteristics of a Canard-Controlled Missile with Freely Spinning Tailfins Using a Semi-Empirical Method and a CFD Code)

  • 양영록;이진희;김문석;정재홍;명노신;조태환
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.220-228
    • /
    • 2008
  • 반실험적 기법과 CFD 코드를 이용하여 자유회전 테일핀을 갖는 커나드 조종 미사일의 공력특성을 연구하였다. 반실험적 기법에서는 테일핀의 회전각에 따른 공력계수의 평균을 구한 후 자유회전 테일핀의 공력계수를 계산하였다. 또한 테일핀의 평균 롤링 및 롤 댐핑 모멘트계수를 이용하여 자유회전 테일핀의 회전율을 예측하였다. CFD 계산의 경우 중첩격자를 이용한 6-자유도 해석을 통해 테일핀의 회전율을 계산하였다. 미사일의 공력계수 예측 값들은 풍동실험 결과와 유사하게 나타났고, 커나드 롤 조종 및 요 조종시의 테일핀 회전율 또한 풍동실험결과와 근접하게 나타났다. 본 연구를 통해 자유회전 테일핀을 갖는 커나드 조종 미사일에 관한 공력해석에 반실험적 기법을 적용할 수 있음을 확인하였다.

수중 운동체의 거동 및 표면 압력하중 예측에 관한 수치적 연구 (A Computational Study About Behavior of an Underwater Projectile and Prediction of Surficial Pressure Loading)

  • 조성민;권오준
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.405-412
    • /
    • 2017
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the platform. Qualitative analysis was conducted for the time history of vapor volume fraction distributions. Uncorking pressure around the projectile and platform was analyzed to predict impact force acting on the surfaces. The results of 6DOF analysis presented similar tendency with the surficial pressure distributions.

비행 조건 변화에 따른 사출 운동체의 초기 거동에 관한 수치적 연구 (Numerical Study about Initial Behavior of an Ejecting Projectile for Varying Flight Conditions)

  • 조성민;권오준;권혁훈;강동기
    • 한국군사과학기술학회지
    • /
    • 제22권4호
    • /
    • pp.517-526
    • /
    • 2019
  • In the present study, unsteady flows around a projectile ejected from an aircraft platform have been numerically investigated by using a three dimensional compressible RANS flow solver based on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. Initial behavior of the projectile for varying conditions, such as roll and pitch-yaw command on the control surface of the projectile, flight Mach number, and platform pitch angle, was investigated. The ejection stability of the projectile was degraded as Mach number increases. In the transonic condition, the initial behavior of the projectile was found to be unstable as increase of platform pitch angle. By applying the command to control surfaces of the projectile, initial stability was highly enhanced. It was concluded that the proposed simulation data are useful for estimating the ejection behavior of a projectile in design phase.