• Title/Summary/Keyword: Chiller Temperature

Search Result 118, Processing Time 0.027 seconds

The Characteristics of Energy Consumption with Operational Conditions for the Central Cooling System (냉방시스템의 운전조건에 따른 에너지 소비특성 연구)

  • Park, Gi-Tae;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.15 no.4
    • /
    • pp.39-45
    • /
    • 2019
  • The operational conditions such as cooling tower water pump flow rate, cooling tower fan flow rate, and chiller capacity in heat source equipment, and supply air temperature and chilled water temperature in air conditioner are considered to study the effects on energy consumption for central cooling system by using TRNSYS program. As a result, the optimal values of supply air temperature and chilled water temperature for minimal total energy consumption are 12℃ and 8℃. And if maximum values of cooling tower water pump and fan flow rate is decreased from 100% to 40%, energy consumptions are increased 170MJ/day and 63.2MJ/day, respectively.

Experimental Study on the Control Characteristics of Each Channel in a Semiconductor Chiller (반도체 공정용 칠러의 채널별 제어특성에 관한 실험적 연구)

  • Kim, Hyeon-Joong;Kwon, Oh-Kyung;Cha, Dong-An;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1285-1292
    • /
    • 2011
  • The characteristics of a semiconductor chiller system with EEV have been experimentally studied. Three experiments on temperature changes (increase and decrease), load variation, and control precision were conducted to investigate the operating characteristics of the semiconductor chiller. The power consumption was 8.9 kW during increase in temperature. The required time was 37.5 min for CH1 and 39.5 min for CH2. Moreover, the time required for falling temperature was 26.5 min. The control precision for partial load operation was relatively low compared to that of a full load operation. In addition, the CH2 equipped with a step motor showed better control precision. The power consumed by the chiller for process cooling water was 1.8 kW, which was one-half of that consumed during the refrigeration cycle. The objective of this study is to provide an optimal control guideline for the semiconductor chiller design.

Development of Single effect/Double lift Absorption Chiller & Heater for a District Heating Net work (저온수2단흡수냉난방기의 개발)

  • Koo, Ki-Dong;Kim, Sang-Ho;Ryu, Jin-Sang;Lee, Jae-Young;Seo, Jong-Cheol;Jang, Hoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.668-672
    • /
    • 2009
  • This is to report the result of Development of Single effect/Double lift absorption chiller & heater which is used in the district heating net work. The heating cycle was newly developed to make the secondary hot water from evaporator and the cycle change-over function was added for the heating to the cooling mode and the cooling to the heating mode. Finally, it was assured through the site trial operation that the outlet temperature of primary hot water can be produced lower than $68^{\circ}C$ when the outlet temperature of secondary hot water is $60^{\circ}C$.

  • PDF

A Study on the Effect of Non-Clean Water Treatment Chemicals for R-134a Turbo-Chiller Condensers (R-134a 터보냉동기 응축기의 무세정 수처리 약품 효과 연구)

  • JUNG, DA-WOON;KIM, MAN-HOE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.437-445
    • /
    • 2022
  • This paper presents an experimental study on the main management factors of the condenser contamination such as fouling and corrosion for the R-134a turbo-chiller to save energy, reduce corrosion rates, and reduce maintenance costs through the application of condenser non-cleaning water treatment chemical. The series of experiment is conducted using combining oxidative microbial sterilizers, non-oxidizing microbial sterilizers, and anti-corrosion agents. The leaving temperature difference and corrosion rates for three different combination of chemicals are collected and analyzed. The experimental results show that the cost reduction (4,066,000 Won/year) of the disinfectant (FT-830) can be achieved by adding the oxidative disinfectant (NaOCl) and the non-oxidizing disinfectant (NX-1116). The LTD value is maintained at 1.9℃, and the corrosion rates of copper and carbon steel specimens are 0.07 mpy and 1.61 mpy, respectively.

Practical Modeling and PI Controller Design for Centrifugal Water Chillers (터보냉동기를 위한 실용적 모델링과 PI 제어기 설계)

  • Jeong, Seok-Kwon;Han, Sung-Joon;Jung, Young-Mi
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.187-194
    • /
    • 2015
  • This paper describes the PI controller design based on a practical transfer function model for centrifugal water chillers. The rotational speed of a compressor and the opening angle of an electronic expansion valve were simultaneously regulated as manipulated variables to maintain temperature reference and to ensure high efficiency of the chiller. The COP according to the change in each variable was investigated by performing some static experiments, and it was reflected in the PI controller design to accomplish the high efficiency control. Especially, the practical transfer function model of the chiller was built based on the dynamic experimental data considering the strong inherent non-linearity and complexity of the chiller system. The validity of the designed PI controller was proven by some experimental results using the test facility and the results were also compared to the conventional evaporating pressure control results.

The Influences of LiBr Solution Recirculation in Absorber on the Absorption Chiller Performance (흡수기 용액 재순환이 흡수식 냉동기 성능에 미치는 영향)

  • Jeong, Jong-Su;Jin, Seong-Min;Park, Chan-U;Choe, Seung-Hak;Jeong, Bong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.733-741
    • /
    • 2002
  • If a part of the poor solution from the absorber outlet is recirculated to the absorber inlet, the solution temperature at the solution spray pump can be reduced, and the solution flow rate in the absorber is increased. We have performed the experiments on the influences of the absorption chiller performance according to the ratio of the recirculation, defined as the ratio of the recirculation flow rate to the total solution flow rate at the absorber outlet. As increasing the ratio of the recirculation, the absorption capacity of the solution can be deteriorated. On the other hand, due to the increasing flow rate, the heat transfer rate can be enhanced. As a result, the performance of the absorber and the cooling capacity of the absorption chiller have nothing to do with the recirculation ratio, and the lifetime of the spray pump will be maintained.

A Numerical Study for the Heat and Mass Transfer in Silica gel/Water Adsorption Chiller's Adsorber (흡착식 냉동기의 흡착탑에서 열 및 물질전달에 관한 수치적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha;Kim, Yong-Chan;Joo, Young-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.341-346
    • /
    • 2005
  • Nowadays, adsorption chillers have been receiving considerable attentions as they are energy-saving and environmental1y benign systems. A Fin & tube type heat exchanger in which adsorption/desorption take place is required more compact size. The adsorption chiller is expected to have high energy-efficiency in utilizing the waste heat exhausted from a process. The objectives of this paper are to investigate the effect of fin pitch of fin & tube on the adsorption performance and to develop an optimal design fin & tube heat exchanger in the silica gel/water adsorption chiller. Previous study concluded that optimal particle size selected 0.5mm, type HO silica gel, and fundamental heat transfer & mass transfer experiments carried out. From the numerical results, the adsorption rate for the fin pitch 2.5mm is the highest than that for the fin pitch 5mm, 7.5mm and 10mm. Also cooling water & hot water temperature affect the adsorption rate.

  • PDF

Exergy Analysis and Optimization of Chiller System in Hydrogen Fueling Station Using R290 Refrigerant (R290 냉매를 이용한 수소 충전소 냉각시스템 엑서지 분석 및 공정 최적화)

  • HYEON, SOOBIN;CHOI, JUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.356-364
    • /
    • 2021
  • During the hydrogen fueling process, hydrogen temperature inside the compressed tank were limited below 85℃ due to the allowable pressure of tank material. The chiller system to cool compressed hydrogen used R407C, greenhouse gas with a high global warming potential (GWP), as a refrigerant. To reduce greehouse gas emission, it should be replaced by refrigerant with a low GWP. This study proposes a chiller system for fueling hydrogen with R290, consisted in propane, by applying the C3 pre-cooled system use d in the LNG liquefaction process. The proposed system consisted of hydrogen compression and cooling sections and optimized the operating pressure through exergy analysis. It was also compared to the exergy efficiency with the existing system at the optimal operating pressure. The result showed that the optimal operating pressure is 700 kPa in 2-stage, 840 kPa/490 kPa in 3-stage, and the exergy efficiency increased by 17%.

Performance analysis for the Characteristics of Double/ Single Effect Hybrid type Absorption Chiller (일중/이중효용 하이브리드 타입 흡수식 냉동기 성능 특성에 관한 수치적 연구)

  • You, Da-Young;Song, Tae-Min;Lee, Jung-Byoung;Kim, Hyung-Jin;Im, Ick-Tae;Moon, Sang-Done;Park, Chan-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.272-278
    • /
    • 2009
  • The characteristics of hybrid type absorption chiller are studied numerically to use a waste hot water effectively. In the case of the full load, the concentration and temperature of LiBr solution are increase about $11^{\circ}C$, 1.3% respectively at the single effect generator by hot water. As a result, the heat of the high temperature generator are decrease, so the energy can be saved. As the partial load decreased the consumption ratio of fuels are decreased and the reduction ratio of fuels are increased. The variation of COP with the inlet temperature of hot water is higher than that of the flow rate of hot water. The effect of mean temperature difference with solution and hot water of the generator are higher that of flow rate of hot water, it can effect on COP which is sensitive to heat of generator.

  • PDF

Control of Water Heat Recovery Chiller Using Split Condenser Templifier Application

  • Cho, Haeng-Muk;Mahmud, Iqbal
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • By using the heat recovery of water-cooled chillers, it is possible to reduce the energy operating costs positively and at the same time it could fulfill the heating re-heat air conditioning system as well as the hot water requirements. Basically templifiers are designed to economically to turn the waste heat into useful heat. Waste heat is extracted from a fluid stream by cooling it in the evaporator, the compressor amplifies the temperature of the heat and the condenser delivers the heat to heating loads such as space heating, kitchens and domestic hot water. Design of higher water temperature requirements and split condenser heat recovery chiller system (using of templifiers) produced hotter condenser water approximately up to $60^{\circ}C$ and control the entire heat recovery system.