• 제목/요약/키워드: Chilled water temperature

검색결과 68건 처리시간 0.024초

비상시 열원중단에 따른 데이터센터의 냉각시스템 열성능 평가에 관한 사례연구 (A Study on Thermal Analysis for a Data Center Cooling System under Fault Conditions at a Chilled Water Plant)

  • 조진균;강호석
    • 설비공학논문집
    • /
    • 제28권5호
    • /
    • pp.178-185
    • /
    • 2016
  • This study describes the analysis of a 20 MW chilled water plant used for the IT cooling of a recently constructed data center in Korea. The CFD model was developed with the aim of evaluating the impact of problems such as chiller failure on the water and air temperatures in the cooling system. The numerical model includes the chilled water hydraulic network and individual water-to-air CRAC units. The coupling between the IT server room air temperature levels and the cooling plant has enabled a full assessment of the cooling system design in response to system fault conditions to be performed. The paper examines an emergency situation involving the failure of the cooling plant, and shows how the inherent thermal inertia of the system along with additional inertia achieved through buffer systems allowed a suitable design to be achieved.

전자식 팽창밸브를 적용한 3RT급 히트펌프 시스템의 냉방 성능 특성 (Cooling Performance Characteristics of 3RT Heat Pump System applied Electronic Expansion Valve)

  • 손창효;윤정인;최광환;하수정;전민주;박성현;이상봉
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.79-85
    • /
    • 2017
  • A heat pump system is a highly efficient, eco-friendly device which consumes a small amount of energy and supply a lot of energy for heat formation. In addition, it is a single device system that has low generation effect about carbon dioxide. There are many researches related to the electronic expansion valve and the heat pump, but the detailed data analysis of each influence is insufficient. In this study, the cooling capacity and COP of the heat pump system were investigated by varying frequency of the inverter connected to compressor, inlet temperature of chilled water into evaporator and inlet temperature of cooling water into condenser. The results are as follows : (1) The cooling capacity increased as the inverter frequency, inlet temperature of chilled water into evaporator increased, and inlet temperature of cooling water into condenser decreased. (2) The COP increased as the frequency of inverter, inlet temperature of cooling water into condenser decreased and the inlet temperature of chilled water into evaporator increased.

복합 열원 공조시스템의 최적 제어 알고리즘 (Optimal Control Algorithm for the Dual Source Chiller Air Conditioning System)

  • 한도영;김진
    • 설비공학논문집
    • /
    • 제16권9호
    • /
    • pp.881-888
    • /
    • 2004
  • Control algorithms for a dual source chiller air conditioning system were developed. These are control algorithms for the supply air temperature control, the supply header chilled water temperature control, the chiller chilled water temperature control, and the cooling tower water temperature control. These algorithms were analyzed by using a dynamic simulation program. Simulation results showed the energy savings and the satisfactory controls of an absorption and centrifugal chiller air conditioning system. Therefore, control algorithms developed for this study may effectively be used for the improved controls of the dual source chiller air conditioning system.

미래의 불확실한 냉방부하에 대한 아이스슬러리를 이용한 지역냉방시스템 (A District Cooling System using Ice Slurry for the Uncertain Cooling Load of the Future)

  • 이윤표;안영환;윤석만
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.233-238
    • /
    • 2006
  • A new district cooling system using ice slurry for the uncertain cooling load of the future is presented. The chilled water produced by the absorption chillers is used for the base cooling load. The temperature of the chilled water is reduced by mixing of ice slurry depending on increasing of the cooling load. Finally, IPF of the ice slurry is increased up to 10% at the peak load. The transporting mass flow rate is decreased down to 44.7%, and the diameter of the main pipe is decreased down to 66.7%, but the diameter of the branched pipe is designed as the same size of the chilled water.

  • PDF

산화 알루미늄 및 냉각거울 노점계의 온도 의존성에 관한 연구 (The Effect of Temperature on Aluminum Oxide and Chilled Mirror Dew-point Hygrometers)

  • 김종철;최병일;우상봉;김용규;이상욱
    • 센서학회지
    • /
    • 제26권1호
    • /
    • pp.50-55
    • /
    • 2017
  • The measurement of absolute humidity of gases is essential in many industries. The effect of temperature on aluminum oxide and chilled mirror dew-point hygrometers is investigated. The temperature of laboratory, pipe line, and sensor is varied and the dew point is measured by two different aluminum oxide hygrometers. In all cases, the dew point of hygrometers is increased as the temperature is elevated. The reason behind this observation is due to desorption of water from the inside of pipe line and/or sensor surroundings at elevated temperature that result in the increase of the absolute humidity. Moreover, the sensor itself shows a certain degree of temperature dependency in sensing the humidity especially at low temperature. It is also studied that chilled mirror dew-point hygrometer may indicate a higher dew point than the reference at high temperature because the cooling capability of mirror is decreased at high temperature. Our study will provide evidences in the incorporation of the temperature effect as uncertainty factors in the standard calibration procedure for dew point hygrometers.

수직관(수직관)내를 흘러내리는 액막식흡수기(液膜式吸收器)의 흡수(吸收) 및 열전달(熱傳達) 특성(特性) (제(第)3보(報), 증발기(蒸發器)의 냉동능력(冷凍能力)과 흡수기(吸收器)의 난방능력(暖房能力)) (Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (3rd. Report, Refrigerating Capacity in Evaporator and Heating Capacity in Absorber))

  • 엄기찬;카시와기 타카오;서정윤
    • 설비공학논문집
    • /
    • 제6권3호
    • /
    • pp.175-181
    • /
    • 1994
  • This paper deals with the correlation of absorption rate in absorber and evaporation rate in evaporator. The evaporator consists of a copper tube of 10mm dia, and 600mm long and chilled water flowing through the tube is fed by the chilled water circulator. The flowrate of LiBr-water solution in the absorber plays a significant role in determining the magnitude of the heat transfer rate from chilled water to refrigerant There exists a flowrate of solution which has a maximum value of heat transfer. It is interesting to note that the absorption rate of absorber increases with increasing the heat transfer rate of the evaporator. Also, absorption rate increases with evaportation rate, and the ratio(the former/the other) depends on the inlet temperature of LiBr-water solution in the absorber. The heating capacity in the absorber is higher than the refrigerating capacity in the evaporator.

  • PDF

열원 및 공조설비 통합 최적제어기법 구현에 관한 연구 (Real Time Near Optimal Control Application Strategy for Heat Source and HVAC System)

  • 송재엽;안병천;주영덕;김진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.60-65
    • /
    • 2008
  • The near-optimal control algorithm for central cooling and heating system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled or hot water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling and heating control system.

  • PDF

실리카겔-물계 흡착식 냉동기에 관한 실험적 연구 (An Experimental Study of Adsorption Chiller using Silica gel-Water)

  • 권오경;윤재호;김종하
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

중앙냉방시스템의 실시간 준최적제어 적용에 따른 실험적 연구 (Real Time Near Optimal Control Application Strategy of Central Cooling System)

  • 안병천;송재엽;주영덕;김진
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.470-477
    • /
    • 2008
  • The near-optimal control algorithm for central cooling system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with near-optimal control are supply air and chilled water temperatures. The near optimal control algorithm has been implemented by using LabVIEW program in order to analyze energy performance for central cooling control system.

공조 시스템용 DDC의 온라인 최적제어에 관한 연구

  • 안병천
    • 설비공학논문집
    • /
    • 제13권11호
    • /
    • pp.1072-1078
    • /
    • 2001
  • The real time optimal control algorithm of the DDC controller for chilled water and supply air temperature set-point of heating, ventilating, air-conditioning and refrigeration systems has been researched for minimization of the total power which is consumed by the chiller, chilled water pump and air handing unit fan. The study has been done by using TRNSYS program in order to analyze the central cooling system in terms of the environmental variables such as indoor cooling lead and wet-bulb temperature. This optimal control alogorithm saves more energy and is suitable for real time on-line control in comparison with conventional method.

  • PDF