• Title/Summary/Keyword: Chicken breast meat

Search Result 279, Processing Time 0.026 seconds

Comparison of the Chemical Composition, Textural Characteristics, and Sensory Properties of North and South Korean Native Chickens and Commercial Broilers

  • Jeon, Hee-Joon;Choe, Jun-Ho;Jung, Yeon-Kook;Kruk, Zbigniew A.;Lim, Dong-Gyun;Jo, Cheo-Run
    • Food Science of Animal Resources
    • /
    • v.30 no.2
    • /
    • pp.171-178
    • /
    • 2010
  • The objective of this study was to compare the quality characteristics of chicken breast and thigh meat from North Korean native chickens (NKNC), South Korean native chickens (SKNC, woorimotdak), and commercial broilers (CB). NKNC thigh meat had a higher crude protein content than CB. In addition, the breasts of NKNC and CB had higher pH values than that of SKNC, but the cooking loss was higher in NKNC. The surface color of the breast and thigh meat of NKNC was darker and redder than that of SKNC and CB. The total collagen content of the breast and thigh muscles was the highest in NKNC, followed by SKNC and CB. A similar trend occurred with breast meat hardness. The content of arachidonic and docosahexaenoic acids was higher in both the breast and thigh muscles of NKNC than in those of the other groups, while the concentrations of linoleic and linolenic acids were higher only in thigh meat. Sensory evaluation did not show any differences among the three different strains of chicken except for the meat color. Sensory panelists preferred thigh meat from SKNC and CB to that of NKNC due to the strong dark color of the NKNC. Based on these results, NKNC had harder breasts based on texture, as well as a darker surface color and higher composition of long chain polyunsaturated fatty acids than CB. The quality characteristics of SKNC tested in this study were intermediate between NKNC and CB; however, SKNC may have a better chance of acceptance by Korean consumers due to the undesirable color of NKNC.

Effect of genotypes on macronutrients and antioxidant capacity of chicken breast meat

  • Lengkidworraphiphat, Phatthawin;Wongpoomchai, Rawiwan;Taya, Sirinya;Jaturasitha, Sanchai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1817-1823
    • /
    • 2020
  • Objective: The increasing consumer awareness of food, which can provide health benefits and potentially aid disease prevention, has become the driving force of the functional food market. Accordingly, the aim of this study was to investigate the effects of chicken genotype on the macronutrient content, bioactive peptide content, and antioxidant capacity within different breast meat. Methods: In this experiment, three genotypes of chicken, Thai indigenous, black-boned, and broiler (control), were reared with commercial feed under the same conditions. Thirty chickens were slaughtered at typical market age and the breasts were separated from the carcass to determine macronutrient content using the AOAC method. The antioxidant capacities of the chicken breasts were evaluated by in vitro antioxidant assays and the protein pattern was investigated using gel electrophoresis. Carnosine and anserine, which have antioxidant properties in animal tissue, were determined using high performance liquid chromatography. Results: The results showed that breast meat from Thai indigenous chickens had a greater macronutrient content and higher antioxidant capacity compared with the other genotypes (p<0.05). The protein pattern was similar between genotypes, however Thai indigenous chickens had the greatest myosin and actin content (p<0.05). In addition, carnosine and anserine values were greatest in the black-boned and Thai indigenous chickens compared with the broiler genotype (p<0.05). Conclusion: Thai indigenous chicken breast meat may be classified as a functional food as it has good nutritional value and is rich in antioxidant peptides.

Quality Characteristics of Marinated Chicken Breast as Influenced by the Methods of Mechanical Processing

  • Kim, Hack-Youn;Kim, Kon-Joong;Lee, Jong-Wan;Kim, Gye-Woong;Choe, Ju-Hui;Kim, Hyun-Wook;Yoon, Yohan;Kim, Cheon-Jei
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.101-107
    • /
    • 2015
  • The aim of this study was to investigate the effects of various marination processes on the quality characteristics of chicken breast prepared with chicken feet gelatin and wheat fiber. The chicken feet gelatin was swollen with hydrochloric solution (0.1 N HCl, pH $1.31{\pm}0.02$) and dehydrated by freeze-drying. The composition (w/w) of the marinade was water (10%), soy sauce (12%), phosphate (0.3%), wheat fiber (1.5%), and chicken feet gelatin (1.5%). Three samples of chicken breast were manufactured with Tumbler (only tumbler), Tenderizer (tenderizer and tumbler), and Injector (injector and tumbler). The water content of the Injector sample was significantly higher than those of the Tumbler and Tenderizer samples (p<0.05). During heating, the lightness of all chicken breasts increased and the redness decreased. The tumbling and cooking yield of the Injector sample were significantly higher than those of the Tumbler and Tenderizer samples (p<0.05). The shear force of the Tenderizer sample was significantly lower than that of the Tumbler and Injector samples (p<0.05). No significant differences, except for color, were observed in the sensory analysis of the samples. Thus, the proper selection of mechanical processing is important to improve the quality characteristics of marinated chicken breast, considering the types of final products.

Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat

  • Zhang, Muhan;Yan, Weili;Wang, Daoying;Xu, Weimin
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1382-1391
    • /
    • 2021
  • Objective: The objective was to evaluate the impact of different forms of iron including myoglobin, hemin, and ferric chloride on the quality of chicken breast meat. Methods: Chicken breast muscles were subjected to 1, 2, 3 mg/mL of FeCl3, myoglobin and hemin treatment respectively, and the production of reactive oxygen species (ROS) and malondialdehyde, meat color, tenderness, water holding capacity and morphology of meat was evaluated. Results: Hemin was found to produce more ROS and induce greater extent of lipid oxidation than myoglobin and ferric chloride. However, it showed that hemin could significantly increase the redness and decrease the lightness of the muscle. Hemin was also shown to be prominent in improving water holding capacity of meat, maintaining a relatively higher level of the immobilized water from low-field nuclear magnetic resonance measurements. Morphology observation by hematoxylin-eosin staining further confirmed the results that hemin preserved the integrity of the muscle. Conclusion: The results indicated that hemin may have economic benefit for the industry based on its advantage in improving water holding capacity and quality of meat.

Quality Characteristics of Korean Native Chicken Meat (한국산 토종 닭고기의 품질 특성)

  • 권연주;여정수;성삼경
    • Korean Journal of Poultry Science
    • /
    • v.22 no.4
    • /
    • pp.223-223
    • /
    • 1995
  • A study was conducted to compare the quality characteristics among commercial broiler, Wangchoo (imported dual purpose breed) and Korean native chicken(KNC). Thigh and breast meat of the broiler(7-wk old), Wangchoo(15-wk old), and Korean native chicken(15-wk old) stored for 24 h at 5t were used to analyze chemical composition, physico-chemical characteristics, textural traits and sensory evaluation test. Crude fat and moisture contents in broiler meat and crude protein content in KNC were significantly(P<.05) higher than those in the other breeds regardless of parts of the body. Total collagen content in broiler meat was significantly higher than those of the other breeds, however, the heat-soluble and the acid-soluble collagen content in Wangchoo were significantly lower than those of the other breeds. Water-holding capacities of KNC in breast meat, and of broiler in leg meat were significantly higher than that of the other breeds, while the results of the water-holding capacity and the cooking loss were reversed. Myofibrillar fragmentation index in broiler meat was significantly higher than that in the other breeds regardless of body parts. Hardness, elasticity and cohesiveness in Wangchoo were significantly higher than those in the other breeds. The prominent fatty acids were oleic, palmitic and linoleic acids and run up to 79.03~83.82 %, regardless of breeds and parts. The sensory evaluation score of tenderness, taste and preference in Wangchoo were lower compared to the broiler and KNC, however, they were not significantly different between broiler and KNC. In conclusion, the quality characteristics of KNC were excellent compared to Wangchoo.

  • PDF

Effect of Frozen Storage and Cooking Methods on Lipid Oxidation in Chicken White and Legs Meat (닭고기 냉동저장과 조리법이 지질의 산패에 미치는 영향)

  • Choi, Jae-Hee;Lee, Sook-Mi;Cho, Chung-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.49-56
    • /
    • 1993
  • The effect of frozen storage and cooking methods on lipid oxidation in chicken meat was studied. Chicken meats were stored 0, 30, 60, 90, 120 days at $-18^{\circ}C$ and were evaluated before and after cooking. 1. The crude fat content of chicken meat is the highest thigh meat with skin in microwaving. Fat content was increased duting 30 days of frozen storage, and then after. 2. Peroxide value, acid value and TBA value was increased during the days of storage because lipid autoxidation was processed cooking and during frozen storage time. The peoxide value and acid value were higher compared to sample cooked by other methods. 3. The fluoresence units were increased with frozen storage, and initial levels of fluoresent after processing. 4. The fatty acid composition of chicken meat fats is mainly palmitic acid and oleic acid, and the effect of frozen storage and meats part is not significantly change but fatty acid significantly change according to frying that linoleic acid was increased during frozen time. From all the results obtained in this study it can be conclude that lipid autoxidation of the chicken meat frozen storage at $18^{\circ}C$ was consistantly processed, and breast meat oxidation was increased than thigh meat because chicken breast meat include many polyunsaturated fatty acid. Frying was significantly increased highest than other cooking methods.

Evening primrose oil and hemp seed oil as an ${\gamma}-linolenic$ acid source for broiler;Influence of fatty acid composition of chicken skin, thigh and breast muscle (브로일러에 대한 감마리놀렌산의 급원으로써 달맞이꽃종자유와 삼씨유;닭 껍질, 다리살 및 가슴살 지질의 지방산 조성에 미치는 영향)

  • Park, Byung-Sung;Kang, Hwan-Ku
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.196-204
    • /
    • 2007
  • The objective of this study was to determine the effect of dietary oils on the levels of the ${\gamma}-linolenic$ acid in chicken meat lipids. Three hundred ten five, 1-d old, male, Ross strain, broiler chicks were fed for 35 d to compare diets containing evening primrose oil(EPO) and hemp seed oil(HO) to a control diet. Fatty acid composition of lipid from chicken skin, thigh and breast muscle were determined at the end of the trial. The level of ${\gamma}-linolenic$ acid of lipids from chicken meat fed diets containing EPO or HO was significantly higher than that of the control group(p<0.05). The level of ${\gamma}-linolenic$ acid of lipids from chicken skin was highest in the group, which had been fed the EPO 0.85%, followed in order by EPO 0.7%, 0.5%, EPO mixed oil, HO and HO mixed oil. There was a significant difference in the level of ${\gamma}-linolenic$ acid of chicken skin between the control and treatment groups(p<0.05). The level of ${\gamma}-linolenic$ acid of lipids from chicken thigh muscle was also similar to skin, and significantly higher than that of the control group(p<0.05). The level of ${\gamma}-linolenic$ acid of lipids from chicken breast muscle was highest in the group, which had been fed the EPO 0.5%, followed in order by EPO 0.7%, 0.85%, HO 0.5% and HO mixed oil. There was a significant difference in the level of ${\gamma}-linolenic$ acid of chicken breast muscle between the control and treatment groups(p<0.05).

Differences in Physicochemical and Nutritional Properties of Breast and Thigh Meat from Crossbred Chickens, Commercial Broilers, and Spent Hens

  • Chen, Yulian;Qiao, Yan;Xiao, Yu;Chen, Haochun;Zhao, Liang;Huang, Ming;Zhou, Guanghong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.855-864
    • /
    • 2016
  • The objective of this study was to compare the physicochemical and nutritional properties of breast and thigh meat from commercial Chinese crossbred chickens (817 Crossbred chicken, 817C), imported commercial broilers (Arbor Acres broiler, AAB), and commercial spent hens (Hyline Brown, HLB). The crossbred chickens, commercial broilers and spent hens were slaughtered at their typical market ages of 45 d, 40 d, and 560 d, respectively. The results revealed that several different characteristic features for the three breeds. The meat of the 817C was darker than that of the other two genotypes. The 817C were also characterized by higher protein, lower intramuscular fat, and better texture attributes (cooking loss, pressing loss and Warner-Bratzler shear force [WBSF]) compared with AAB and HLB. The meat of the spent hens (i.e. HLB) was higher in WBSF and total collagen content than meat of the crossbred chickens and imported broilers. Furthermore, correlation analysis and principal component analysis revealed that there was a clear relationship among physicochemical properties of chicken meats. With regard to nutritional properties, it was found that 817C and HLB exhibited higher contents of essential amino acids and essential/non-essential amino acid ratios. In addition, 817C were noted to have highest content of microelements whereas AAB have highest content of potassium. Besides, 817C birds had particularly higher proportions of desirable fatty acids, essential fatty acids, polyunsaturated/saturated and (18:0+18:1)/16:0 ratios. The present study also revealed that there were significant differences on breast meat and thigh meat for the physicochemical and nutritional properties, regardless of chicken breeds. In conclusion, meat of crossbred chickens has some unique features and exhibited more advantages over commercial broilers and spent hens. Therefore, the current investigation would provide valuable information for the chicken meat product processing, and influence the consumption of different chicken meat.

Carcass and retail meat cuts quality properties of broiler chicken meat based on the slaughter age

  • Park, Sin-Young;Byeon, Dong-Seob;Kim, Gye-Woong;Kim, Hack-Youn
    • Journal of Animal Science and Technology
    • /
    • v.63 no.1
    • /
    • pp.180-190
    • /
    • 2021
  • This study aimed to determine the carcass and meat quality of broiler chickens based on the slaughter age (28, 30, 32, and 34 days). The carcass characteristics included live and carcass weights, carcass rate, dressing rate, and retail cut weight. The meat quality properties were determined through proximate composition, pH, color, water holding capacity (WHC), cooking yield, and shear-force. The broiler chicken live, carcass, breast, thigh, and wing weights significantly increased with the slaughter age (p < 0.05); the tenderloin weight also exhibited a similarly increasing trend. However, the carcass rate of the day 28 sample was significantly lower than the other samples (p < 0.05). The protein and ash contents of the breast exhibited an increasing trend with increasing slaughter age. The protein content of the thigh of the day 28 sample was significantly lower than that of the other samples (p < 0.05), while the ash contents of the day 28 and 30 samples were significantly lower. The redness of the breast showed an increasing trend, and the pH and lightness of the thigh exhibited a decreasing trend with slaughter age. The WHC and cooking yields of the day 30 and 32 breast and thigh samples were significantly higher than those of the day 28 and 34 samples (p < 0.05). The breast and thigh shear-force of the day 30-34 samples were significantly higher than those of the day 28 sample (p < 0.05). The present study showed that even with a twoday difference in slaughter age, the broiler chicken meat quality showed a significant difference in several characteristics.

Effects of Using Soybean Protein Emulsion as a Meat Substitute for Chicken Breast on Physicochemical Properties of Vienna Sausage

  • Kang, Kyu-Min;Lee, Sol-Hee;Kim, Hack-Youn
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.73-83
    • /
    • 2022
  • The aim of this study is to determine the effects of using emulsion manufactured with soybeans (ES) to substitute chicken breast in Vienna sausages. Four types of Vienna sausages (S1: 10% ES and 50% chicken, S2: 20% ES and 40% chicken, S3: 30% ES and 30% chicken, and S4: 40% ES and 20% chicken) for this study were made. The pH, color, proximate composition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), microphotographs, cooking yields, and texture profile analysis of sausages were examined. The pH value of uncooked and cooked sausages increased significantly with increasing ES content (p<0.05). The crude protein contents of S2, S3, and S4 were significantly higher than that of the control (p<0.05). Furthermore, the SDS-PAGE results showed that α-conglycinin, β-conglycinin, and the acidic subunit of glycinin all increased with increasing ES content. Microphotographs revealed that increasing the ES content decreased the size of fat globules. The cooking yields of samples increased significantly with increasing ES content (p<0.05). The hardness values of ES treated samples were significantly lower than that of the control (p<0.05). Therefore, 30% substitute of chicken breast with ES can improve the quality and structure of Vienna sausage, without inducing critical defects.