• Title/Summary/Keyword: Chest X-ray Images

Search Result 118, Processing Time 0.02 seconds

Lung Segmentation Considering Global and Local Properties in Chest X-ray Images (흉부 X선 영상에서의 전역 및 지역 특성을 고려한 폐 영역 분할 연구)

  • Jeon, Woong-Gi;Kim, Tae-Yun;Kim, Sung Jun;Choi, Heung-Kuk;Kim, Kwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.829-840
    • /
    • 2013
  • In this paper, we propose a new lung segmentation method for chest x-ray images which can take both global and local properties into account. Firstly, the initial lung segmentation is computed by applying the active shape model (ASM) which keeps the shape of deformable model from the pre-learned model and searches the image boundaries. At the second segmentation stage, we also applied the localizing region-based active contour model (LRACM) for correcting various regional errors in the initial segmentation. Finally, to measure the similarities, we calculated the Dice coefficient of the segmented area using each semiautomatic method with the result of the manually segmented area by a radiologist. The comparison experiments were performed using 5 lung x-ray images. In our experiment, the Dice coefficient with manually segmented area was $95.33%{\pm}0.93%$ for the proposed method. Effective segmentation methods will be essential for the development of computer-aided diagnosis systems for a more accurate early diagnosis and prognosis regarding lung cancer in chest x-ray images.

A Deep Learning Model for Judging Presence or Absence of Lesions in the Chest X-ray Images (흉부 디지털 영상의 병변 유무 판단을 위한 딥러닝 모델)

  • Lee, Jong-Keun;Kim, Seon-Jin;Kwak, Nae-Joung;Kim, Dong-Woo;Ahn, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.212-218
    • /
    • 2020
  • There are dozens of different types of lesions that can be diagnosed through chest X-ray images, including Atelectasis, Cardiomegaly, Mass, Pneumothorax, and Effusion. Computed tomography(CT) test is generally necessary to determine the exact diagnosis and location and size of thoracic lesions, however computed tomography has disadvantages such as expensive cost and a lot of radiation exposure. Therefore, in this paper, we propose a deep learning algorithm for judging the presence or absence of lesions in chest X-ray images as the primary screening tool for the diagnosis of thoracic lesions. The proposed algorithm was designed by comparing various configuration methods to optimize the judgment of presence of lesions from chest X-ray. As a result, the evaluation rate of lesion presence of the proposed algorithm is about 1% better than the existing algorithm.

How to Improve Image Quality for the Chest PA and the Simple Abdomen X-ray Examinations (흉, 복부 단순 X-ray 검사 시 영상의 질 향상 방법)

  • Cho, Pyong Kon
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 2013
  • The purpose of this study is to examine how much the movement at X-ray examinations like breathing or the positioning affects the image during chest or abdomen X-ray examination so as to create an image containing information as much as possible. The study method adopted is doing the X-ray in each of the states including breathing (inspiration & expiration) and movement in the standing chest PA X-ray and simple abdomen X-ray among the kinds of examination selected the most in hospitals and then evaluating them by applying the standards of image evaluation for each region. According to the study result, about the standing chest PA X-ray, the images taken at inspiration contain more information than those taken at expiration or having subtle movement during the examination. About the simple abdomen X-ray, the images taken at expiration contain more information than those taken at inspiration or movement. The above study results imply that regarding general X-ray examination, information we can find from the images may differ significantly according to the region examined, examination purpose, or movement during the examination like breathing.

A Study Transform Coding of Medical Image Using Adaptive Quantization Method (적응 양자화를 위한 의료 영상 정보의 변환 부호화에 관한 연구)

  • 한영오;박장춘
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.243-252
    • /
    • 1989
  • In this study, medical images, which are X-ray image and CT image, are compressed by the adam live coding technique. The medical images may be treated as special ones, because they are different from general images in many respects. The statistical characteristics that medical images only have in transform domain are analyzed, and then the improved quantization method is proposed for medical images. For chest X-ray image and CT head image, the better results are obtained by the improved adaptive coding technique.

  • PDF

Evaluation on the Usefulness of X-ray Computer-Aided Detection (CAD) System for Pulmonary Tuberculosis (PTB) using SegNet (X-ray 영상에서 SegNet을 이용한 폐결핵 자동검출 시스템의 유용성 평가)

  • Lee, J.H.;Ahn, H.S.;Choi, D.H.;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • Testing TB in chest X-ray images is a typical method to diagnose presence and magnitude of PTB lesion. However, the method has limitation due to inter-reader variability. Therefore, it is essential to overcome this drawback with automatic interpretation. In this study, we propose a novel method for detection of PTB using SegNet, which is a deep learning architecture for semantic pixel wise image labelling. SegNet is composed of a stack of encoders followed by a corresponding decoder stack which feeds into a soft-max classification layer. We modified parameters of SegNet to change the number of classes from 12 to 2 (TB or none-TB) and applied the architecture to automatically interpret chest radiographs. 552 chest X-ray images, provided by The Korean Institute of Tuberculosis, used for training and test and we constructed a receiver operating characteristic (ROC) curve. As a consequence, the area under the curve (AUC) was 90.4% (95% CI:[85.1, 95.7]) with a classification accuracy of 84.3%. A sensitivity was 85.7% and specificity was 82.8% on 431 training images (TB 172, none-TB 259) and 121 test images (TB 63, none-TB 58). This results show that detecting PTB using SegNet is comparable to other PTB detection methods.

A Thoracic Spine Segmentation Technique for Automatic Extraction of VHS and Cobb Angle from X-ray Images (X-ray 영상에서 VHS와 콥 각도 자동 추출을 위한 흉추 분할 기법)

  • Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.

Evaluation of Classification Performance of Inception V3 Algorithm for Chest X-ray Images of Patients with Cardiomegaly (심장비대증 환자의 흉부 X선 영상에 대한 Inception V3 알고리즘의 분류 성능평가)

  • Jeong, Woo-Yeon;Kim, Jung-Hun;Park, Ji-Eun;Kim, Min-Jeong;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.455-461
    • /
    • 2021
  • Cardiomegaly is one of the most common diseases seen on chest X-rays, but if it is not detected early, it can cause serious complications. In view of this, in recent years, many researches on image analysis in which deep learning algorithms using artificial intelligence are applied to medical care have been conducted with the development of various science and technology fields. In this paper, we would like to evaluate whether the Inception V3 deep learning model is a useful model for the classification of Cardiomegaly using chest X-ray images. For the images used, a total of 1026 chest X-ray images of patients diagnosed with normal heart and those diagnosed with Cardiomegaly in Kyungpook National University Hospital were used. As a result of the experiment, the classification accuracy and loss of the Inception V3 deep learning model according to the presence or absence of Cardiomegaly were 96.0% and 0.22%, respectively. From the research results, it was found that the Inception V3 deep learning model is an excellent deep learning model for feature extraction and classification of chest image data. The Inception V3 deep learning model is considered to be a useful deep learning model for classification of chest diseases, and if such excellent research results are obtained by conducting research using a little more variety of medical image data, I think it will be great help for doctor's diagnosis in future.

An Optimal Algorithm for Enhancing the Contrast of Chest Images Using the Frequency Filters Based on Fuzzy Logic

  • Shin, Choong-Ho;Jung, Chai-Yeoung
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.2
    • /
    • pp.131-136
    • /
    • 2017
  • Chest X-ray image cannot be focused in the same manner as optical lenses and the resultant image generally tends to be slightly blurred. Therefore, appropriate methods to improve the quality of chest X-ray image have been studied in this paper. As the frequency domain filters work well for slight blurring and moderate levels of additive noises, we propose an algorithm that is particularly suitable for enhancing chest image. First, the chest image using Gaussian high pass filter and the optimal high frequency emphasis filter shows improvements in the edges and contrast of the flat areas. Second, as compared to using histogram equalization where each pixel of chest image is characterized by a loss of detail and much noises, in using fuzzy logic, each pixel of chest image shows the detail preservation and little noise.

PLUG-IN MODULES ON PLUTO FOR IDENTIFYING INFLAMMATORY NODULES FROM LUNG NODULES IN CHEST X-RAY CT IMAGES

  • Hirano, Yasushi;Seki, Nobuhiko;Eguchi, Kenji
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.794-798
    • /
    • 2009
  • We introduce an implementation of plug-ins on PLUTO. These plug-ins discriminate inflammatory nodules from other types of nodules in chest X-ray CT images. The PLUTO is a common platform for computer-aided diagnosis systems on Microsoft Windows series and it is easy to add new functions as plug-ins. We coded two plug-ins. One of the them calculates features based on medical knowledge. The other plug-in calculates parameters to classify the type of nodules, and it also classifies nodules into inflammatory nodules and others using SVM. These plug-ins are coded using MIST library which is produced at Nagoya University, Japan. In our previous study, the MIST library was parallelized, so that we can utilize a number of CPUs to calculate features and SVM learning/classifying depending on the amount of computation. Using these plug-ins, it became easy to extract features to discriminate inflammatory nodules from other types of nodules and to change parameters for feature extraction and SVM learning/classifying with GUI interface. The accuracy of the classifying result is 100% with 78 solid nodules which contains 43 inflammatory nodules and 35 other type of nodules.

  • PDF

A Deep Learning Approach for Covid-19 Detection in Chest X-Rays

  • Sk. Shalauddin Kabir;Syed Galib;Hazrat Ali;Fee Faysal Ahmed;Mohammad Farhad Bulbul
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.125-134
    • /
    • 2024
  • The novel coronavirus 2019 is called COVID-19 has outspread swiftly worldwide. An early diagnosis is more important to control its quick spread. Medical imaging mechanics, chest calculated tomography or chest X-ray, are playing a vital character in the identification and testing of COVID-19 in this present epidemic. Chest X-ray is cost effective method for Covid-19 detection however the manual process of x-ray analysis is time consuming given that the number of infected individuals keep growing rapidly. For this reason, it is very important to develop an automated COVID-19 detection process to control this pandemic. In this study, we address the task of automatic detection of Covid-19 by using a popular deep learning model namely the VGG19 model. We used 1300 healthy and 1300 confirmed COVID-19 chest X-ray images in this experiment. We performed three experiments by freezing different blocks and layers of VGG19 and finally, we used a machine learning classifier SVM for detecting COVID-19. In every experiment, we used a five-fold cross-validation method to train and validated the model and finally achieved 98.1% overall classification accuracy. Experimental results show that our proposed method using the deep learning-based VGG19 model can be used as a tool to aid radiologists and play a crucial role in the timely diagnosis of Covid-19.