Eui Jin Hwang;Hyungjin Kim;Soon Ho Yoon;Jin Mo Goo;Chang Min Park
Korean Journal of Radiology
/
제21권10호
/
pp.1150-1160
/
2020
Objective: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. Materials and Methods: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. Results: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). Conclusion: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.
1956년부터 2005년까지 50년간 대한결핵협회의 X선 검진사업에 의해 촬영된 흉부방사선영상(CXR) 판독 결과를 분석하였으며 통계의 특성 및 자료의 원본에 충실하기 위해 대한결핵협회에서 발행되는 연보(annual report)의 내용만을 분석하였다. 따라서 결핵협회의 사업목적 중의 하나인 폐결핵 유소견자에 대한 분석이 핵심적으로 이루어졌으며 연령과 성별 등은 포함되지 않았다. 50년간의 누적 검진 대상자에 대한 폐결핵 유소견자를 질환별로 분석한 결과는 다음과 같다. 검진대상자 총 수는 54,938,875명으로 나타났다. 이 중 폐결핵 유소견자 수는 958,251명(1.74%), 요치료자 465,082명(0.85%), 경증자 229,615명(0.42%), 중등증 144,247명(0.26%), 중증 74,066명(0.13%), 삼출성흉막염 17,154명(0.03%), 요관찰자 493,169명(0.90%), 활동성 미정 78,214명(0.14%), 의사결핵 272,349명(0.50%) 등으로 나타났다.
Objective: To compare the effects of bone suppression imaging using deep learning (BSp-DL) based on a generative adversarial network (GAN) and bone subtraction imaging using a dual energy technique (BSt-DE) on radiologists' performance for pulmonary nodule detection on chest radiographs (CXRs). Materials and Methods: A total of 111 adults, including 49 patients with 83 pulmonary nodules, who underwent both CXR using the dual energy technique and chest CT, were enrolled. Using CT as a reference, two independent radiologists evaluated CXR images for the presence or absence of pulmonary nodules in three reading sessions (standard CXR, BSt-DE CXR, and BSp-DL CXR). Person-wise and nodule-wise performances were assessed using receiver-operating characteristic (ROC) and alternative free-response ROC (AFROC) curve analyses, respectively. Subgroup analyses based on nodule size, location, and the presence of overlapping bones were performed. Results: BSt-DE with an area under the AFROC curve (AUAFROC) of 0.996 and 0.976 for readers 1 and 2, respectively, and BSp-DL with AUAFROC of 0.981 and 0.958, respectively, showed better nodule-wise performance than standard CXR (AUAFROC of 0.907 and 0.808, respectively; p ≤ 0.005). In the person-wise analysis, BSp-DL with an area under the ROC curve (AUROC) of 0.984 and 0.931 for readers 1 and 2, respectively, showed better performance than standard CXR (AUROC of 0.915 and 0.798, respectively; p ≤ 0.011) and comparable performance to BSt-DE (AUROC of 0.988 and 0.974; p ≥ 0.064). BSt-DE and BSp-DL were superior to standard CXR for detecting nodules overlapping with bones (p < 0.017) or in the upper/middle lung zone (p < 0.017). BSt-DE was superior (p < 0.017) to BSp-DL in detecting peripheral and sub-centimeter nodules. Conclusion: BSp-DL (GAN-based bone suppression) showed comparable performance to BSt-DE and can improve radiologists' performance in detecting pulmonary nodules on CXRs. Nevertheless, for better delineation of small and peripheral nodules, further technical improvements are required.
Felix Peuker;Thomas Philip Bosch;Roderick Marijn Houwert;Ruben Joost Hoepelman;Menco Johannes Sophius Niemeyer;Mark van Baal;Fabrizio Minervini;Frank Johannes Paulus Beeres;Bryan Joost Marinus van de Wall
Journal of Chest Surgery
/
제57권5호
/
pp.430-439
/
2024
Background: This study investigated the incidence and clinical consequences of abnormal radiological and clinical findings during routinely performed 6-week outpatient visits in patients treated conservatively for multiple (3 or more) rib fractures. Methods: A retrospective analysis was conducted among patients with multiple rib fractures treated conservatively between 2018 and 2021 (Opvent database). The primary outcome was the incidence of abnormalities on chest X-ray (CXR) and their clinical consequences, which were categorized as requiring intervention or additional clinical/radiological examination. The secondary focus was the incidence of deviation from standard treatment in response to the findings (clinical or radiological) at the routine 6-week outpatient visit. Results: In total, 364 patients were included, of whom 246 had a 6-week visit with CXR. The median age was 57 years (interquartile range, 46-70 years) and the median Injury Severity Score was 17 (interquartile range, 13-22). Forty-six abnormalities (18.7%) were found on CXR. These abnormalities resulted in additional outpatient visits in 4 patients (1.5%) and in chest drain insertion in 2 (0.8%). Only 2 patients (0.8%) with an abnormality on CXR presented without symptoms. None of the 118 patients who had visits without CXR experienced problems. Conclusion: Routine 6-week outpatient visits for patients with conservatively treated multiple rib fractures infrequently revealed abnormalities requiring treatment modifications. It may be questioned whether the 6-week outpatient visit is even necessary. Instead, a more targeted approach could be adopted, providing follow-up to high-risk or high-demand patients only, or offering guidance on recognizing warning signs and providing aftercare through a smartphone application.
Coronavirus disease(COVID-19) is highly infectious disease that directly affects the lungs. To observe the clinical findings from these lungs, the Chest Radiography(CXR) can be used in a fast manner. However, the diagnostic performance via CXR needs to be improved, since the identifying these findings are highly time-consuming and prone to human error. Therefore, Artificial Intelligence(AI) based tool may be useful to aid the diagnosis of COVID-19 via CXR. In this study, we explored various Deep learning(DL) approach to classify COVID-19, other viral pneumonia and normal. For the original dataset and lung-segmented dataset, the pre-trained AlexNet, SqueezeNet, ResNet18, DenseNet201 were transfer-trained and validated for 3 class - COVID-19, viral pneumonia, normal. In the results, AlexNet showed the highest mean accuracy of 99.15±2.69% and fastest training time of 1.61±0.56 min among 4 pre-trained neural networks. In this study, we demonstrated the performance of 4 pre-trained neural networks in COVID-19 diagnosis with CXR images. Further, we plotted the class activation map(CAM) of each network and demonstrated that the lung-segmentation pre-processing improve the performance of COVID-19 classifier with CXR images by excluding background features.
흉부 X선은 폐와 종격동 질환을 평가하는 데 있어 매우 중요한 일차 영상 검사이다. 초기 흉부 X선에서 놓친 폐암은 환자의 진단을 지연시키고 예후에 중요한 영향을 줄 수 있다. 저자들은 초기 흉부 X선에서 폐암의 중요한 진단적 오류를 피하기 위하여 비교적 흔히 접하게 되는 영상 진단의 함정에 대하여 다양한 증례를 통하여 검토하고 또한 폐암의 다양한 영상 소견의 중요성에 대하여 중점적으로 살펴보고자 한다.
신종 코로나바이러스 감염증(Coronavirus disease 2019; COVID-19)이 빠르게 확산됨에 따라 세계적인 전염병 대유행인 팬데믹(Pandemic)으로 선언되었다. 감염자들은 꾸준히 증가하고 있고 최근에는, 무증상 감염자들이 나타나고 있어 의심 환자를 조기에 판단하고 선별할 수 있는 기술이 필요하다. 본 논문에서는 흉부 방사선 검사(chest Radiography; CXR) 영상을 딥러닝(Deep Learning)하여 정상인, 폐렴 환자, 코로나바이러스 감염자를 분류할 수 있도록 한다.
Hyunsuk Yoo;Eun Young Kim;Hyungjin Kim;Ye Ra Choi;Moon Young Kim;Sung Ho Hwang;Young Joong Kim;Young Jun Cho;Kwang Nam Jin
Korean Journal of Radiology
/
제23권10호
/
pp.1009-1018
/
2022
Objective: This study aimed to investigate the feasibility of using artificial intelligence (AI) to identify normal chest radiography (CXR) from the worklist of radiologists in a health-screening environment. Materials and Methods: This retrospective simulation study was conducted using the CXRs of 5887 adults (mean age ± standard deviation, 55.4 ± 11.8 years; male, 4329) from three health screening centers in South Korea using a commercial AI (Lunit INSIGHT CXR3, version 3.5.8.8). Three board-certified thoracic radiologists reviewed CXR images for referable thoracic abnormalities and grouped the images into those with visible referable abnormalities (identified as abnormal by at least one reader) and those with clearly visible referable abnormalities (identified as abnormal by at least two readers). With AI-based simulated exclusion of normal CXR images, the percentages of normal images sorted and abnormal images erroneously removed were analyzed. Additionally, in a random subsample of 480 patients, the ability to identify visible referable abnormalities was compared among AI-unassisted reading (i.e., all images read by human readers without AI), AI-assisted reading (i.e., all images read by human readers with AI assistance as concurrent readers), and reading with AI triage (i.e., human reading of only those rendered abnormal by AI). Results: Of 5887 CXR images, 405 (6.9%) and 227 (3.9%) contained visible and clearly visible abnormalities, respectively. With AI-based triage, 42.9% (2354/5482) of normal CXR images were removed at the cost of erroneous removal of 3.5% (14/405) and 1.8% (4/227) of CXR images with visible and clearly visible abnormalities, respectively. In the diagnostic performance study, AI triage removed 41.6% (188/452) of normal images from the worklist without missing visible abnormalities and increased the specificity for some readers without decreasing sensitivity. Conclusion: This study suggests the feasibility of sorting and removing normal CXRs using AI with a tailored cut-off to increase efficiency and reduce the workload of radiologists.
Simple chest radiography에서 정상인의 가로막(diaphragm)에 대한 계측치는 다음과 같다. 1. 전체 대상자에 대한 흉곽(internal diameter of thorax: ID)의 평균은 293.3 mm이었으며, 최소 221.0 mm, 최대 335.3 mm이었다. 2. 가로막의 높이는 오른 가로막이 높은 경우가 81.4%, 오른 가로막과 왼 가로막이 동일한 경우가 16.2%, 왼 가로막이 높은 경우가 2.4% 순으로 나타났다. 3. 오른 가로막이 높은 경우 오른 가로막의 평균 높이는 15.2 mm이었으며, 가장 낮은 경우는 2.0 mm, 가장 높은 경우는 41.7 mm이었다. 4. 왼 가로막이 높은 경우 왼 가로막의 평균 높이는 11.5 mm이었으며, 가장 낮은 경우는 4.7 mm, 가장 높은 경우는 30.4 mm이었다. 5. 가로막의 만곡도에서 오른 가로막의 평균 만곡은 22.9 mm이었고, 가장 작은 경우는 10.4 mm, 가장 큰 경우는 37.3 mm이었다. 6. 왼 가로막의 평균 만곡은 22.4 mm이었고, 가장 작은 경우는 11.3 mm, 가장 큰 경우는 42.2 mm이었다. 7. ID와 오른 가로막과 왼 가로막 만곡에 대한 관계에서 ID는 오른 가로막 만곡(r= .427, p<.001)과 왼 가로막 만곡(r= .425, p<.001)에서 모두 통계적으로 유의미한 정적 상관관계를 보였다. 8. 오른 가로막 만곡과 왼 가로막 만곡의 관계는(r= .403, p<.001) 통계적으로 유의미한 정적 상관관계를 보였다.
특별한 임상적 증상이 없는 대상자 총 1,669명의 단순 흉부방사선영상(simple chest radiography, CXR) 소견을 분석한 결과 다음과 같은 결론을 얻었다. 1. 연구대상자의 일반적 특성은 총 1,669명 중 남자 55.2%, 여자 44.8%이었다. 2. 흉부 질환이 있는 경우는 총 1,669명 중 14.9%인 249명이었다. 3. 연령에 따른 질환의 분석에서는 35세 미만 6.1%, $35{\sim}39$세 9.7%, $40{\sim}49$세 13.3%, 50세 이상 30.8%로 연령이 많을수록 질병이 많았다. 4. 질환의 발생부위는 폐질환만을 고려할 때 right upper lobe가 가장 많았고, both upper lobe, left upper lobe의 순이었다. 5. 질환의 종류는 유소견자 249명 중 pulmonary nodule를 가지고 있는 경우가 55.0%(총 1,669명의 대상자에서 유소견자 249명 중 137명으로 전체 대상자를 기준으로 할 경우 8.2%)로 가장 많았으며, 다음으로 cardiomegaly 24.5%, CP angle blunting 4.8%, scoliosis 4.6%, tortous aorta 2.8%, bronchial luminal dilatation 2.4%, pleural thickening 2.0% 순으로 나타났고, dextrocardia와 cystic dilation of bronchus, cavitary lesion, lung collapse 등은 각각 0.4%로 매우 적었다. 6. 성별에 따른 질환의 종류는 남자가 여자보다 pulmonary nodule이 많았고, 여자는 남자보다 cardiomegaly와 tortous aorta, scoliosis가 더 많았다. 7. 연령에 따른 질환의 종류는 35세 미만이 다른 연령대보다 scoliosis가 많았고, $40{\sim}49$세는 CP angle blunting, $35{\sim}39$세는 pulmonary nodule, 50세 이상은 cardiomegaly와 tortous aorta가 많았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.