• Title/Summary/Keyword: Chern-Simons CP(1) model

Search Result 2, Processing Time 0.014 seconds

ASYMPTOTIC LIMITS FOR THE SELF-DUAL CHERN-SIMONS CP(1) MODEL

  • HAN, JONG-MIN;NAM, HEE-SEOK
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.579-588
    • /
    • 2005
  • In this paper we study the asymptotics for the energy density in the self-dual Chern-Simons CP(1) model. When the sequence of corresponding multivortex solutions converges to the topological limit, we show that the field configurations saturating the energy bound converges to the limit function. Also, we show that the energy density tends to be concentrated at the vortices and antivortices as the Chern-Simons coupling constant $\kappa$ goes to zero.

EXISTENCE AND ASYMPTOTICS FOR THE TOPOLOGICAL CHERN-SIMONS VORTICES OF THE CP(1) MODEL

  • NAM HEE-SEOK
    • The Pure and Applied Mathematics
    • /
    • v.12 no.3 s.29
    • /
    • pp.169-178
    • /
    • 2005
  • In this paper we study the existence and local asymptotic limit of the topological Chern-Simons vortices of the CP(1) model in $\mathbb{R}^2$. After reducing to semilinear elliptic partial differential equations, we show the existence of topological solutions using iteration and variational arguments & prove that there is a sequence of topological solutions which converges locally uniformly to a constant as the Chern­Simons coupling constant goes to zero and the convergence is exponentially fast.

  • PDF