• Title/Summary/Keyword: Cherepnov 송수기

Search Result 3, Processing Time 0.018 seconds

A Determination of Discharge Head of the Cherepnov Water Lifter with Siphon (Siphon을 이용한 Cherepnov 送水機의 揚程 決定)

  • 이관수;이경훈
    • Water for future
    • /
    • v.29 no.1
    • /
    • pp.213-220
    • /
    • 1996
  • This paper presents an experimental study on the discharge head of Cherepnov water lifter that was continuously operated with the aid of the siphon. The energy used by the Cherepnov water lifter is derived from the potential energy ofthe water itself. The lifter consists of three interconnected tanks and five pipes, one of which is open and two others are hermetically sealed. The effects of varying operating parameters such as the tank and pipe size, the ratio between head of discharge and drop height were analyzed. As a result, factors that can maximize the efficiency and increase the average delivery rate were indentified. When the ratio between head of discharge and drop height is about 0.5, the efficiency of Cherepnov water lifter is maximized. In order to design the efficient Cherepnov water lifter, the discharge head of the Cherepnov water lifter should be assigned to be twice as much as the drop height. The effect of tank size on the efficiency is less than 5%, while the effect of the pipe size is not negligible. The larger the pipe size is, the more the efficiency increases.

  • PDF

Development of Mathematical Model for the Cherepnov Water Lifter (CHEREPNOV송수기의 수학적모델 개발)

  • Lee, Kwan-Soo;Rhee, Kyung-Hoon;Park, Sung-Chun
    • Water for future
    • /
    • v.28 no.1
    • /
    • pp.121-132
    • /
    • 1995
  • This paper presents a mathematical model which simulates the Cherepnov water lifter, that can lift water without the use of external energy such as electricity. A theoritical study was conducted to reveal the characteristics of the Cherepnov water lifter that was continuously operated with the aid of the siphon. The mathematical model wal composed of the continuity equation and energy equation, and was coded using FORTRAN language. In this study, the govering flow equation of the lifter were derived and the computer programs of the equations were worked out. The accuracy of the theoretical equations and their solutions was checked by laboratory experimentation. The mathematical model that simulate the Cherepnov water lifter is appeared to be good to predict the behavior of Cherepnov water lifter. Therefore, the mathematical model and the simulation method used in this study could be used in designing of the Cherepnov water lifter.

  • PDF

Experimental Characteristic of Drain Control to Cherepnov Water Lifter (Cherepnov 송수기에 대한 배수제어방식의 실험적 특성)

  • 박성천;이강일
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.67-79
    • /
    • 1997
  • The perpose of this study was to suggest the experimental characteristic of the Cherepnov Water Lifter following the drain mode. The Cherepnov Water Lifter(CWL), which is powered by the potential energy of water, can be set to operate automatically when the water m a tank is drained. In this study, a CWL is constructed in the valve drain controlling mode(VCM) and the siphon drain controlling mode(SCM), and a pressure transducer is installed. It was found that, in the VCM, intake flow volume is proportional to both delivery flow volume and drain flow volume. In the SCM, intake flow volume is proportional to drain flow volume, and the average delivery rate is proportional to both efficiency and the water utilization ratio. Also, in the VCM, the water utilization ratio is 35~49%, efficiency is 62~9O%, average delivery rate is 12.8~81.2$cm^3$/s, and the average drain rate is 14.O~91.5c$cm^3$/s. On the contrary in the SCM, the water utilization ratio is 1.7~38%, efficiency is 3~58%, average delivery rate is 3.1 ~69.2$cm^3$/s, and the average drain rate is shown as 114.5~ 183$cm^3$/s. As a result of the water utilization ratio, efficiency, average delivery rate, and average drain rate are compared, the VCM is found to be superior and the more economical mode. However, the VCM requires manpower and electricity to operate the electronic machinery involved, while the SCM requires no manpower or electricity at all. An economic evaluation of these differences will be necessary in the future. Also, in the SCM, studies to improve water utilization ratio and efficiency, to find the optimum height of the siphon for decreasing the average drain rate, and to determine the radius of curvature of throat have to be conducted in advance, since a large flow rate is drained during the priming action of the siphon.

  • PDF