• Title/Summary/Keyword: Cheongju Megalo Landfill

Search Result 2, Processing Time 0.018 seconds

Assessment of Landfill Gas Generation - A Case Study of Cheongju Megalo Landfill (매립지 가스 발생량 평가 - 청주권 광역생활폐기물 매립장 사례연구)

  • Hong, Sang-Pyo
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.5
    • /
    • pp.321-330
    • /
    • 2008
  • Methane is a potent greenhouse gas and methane emissions from landfills have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity $L_o$, but in this study, k value of 0.05/yr and $L_o$ value of $170m^3/Mg$ were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling, Cheongju Megalo Landfill. High discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food garbage waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions.

Estimation of Methane Generation Rate and Potential Methane Generation Capacity at Cheongju Megalo Landfill Site Based on LandGEM Model (LandGEM 모델을 이용한 청주권 생활폐기물 매립장의 매립지가스 발생상수 및 메탄 잠재발생량 산정)

  • Hong, Sang-Pyo
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.6
    • /
    • pp.414-422
    • /
    • 2008
  • Methane is a potent greenhouse gas and methane emissions from landfill sites have been linked to global warming. In this study, LandGEM (Landfill Gas Emission Model) was applied to predict landfill gas quantity over time, and then this result was compared with the data surveyed on the site, Cheongju Megalo Landfill. LandGEM allows the input of site-specific values for methane generation rate (k) and potential methane generation capacity $L_o$, but in this study, k value of 0.04/yr and $L_o$ value of $100\;m^3$/ton were considered to be most appropriate for reflecting non-arid temperate region conventional landfilling like Cheongju Megalo Landfill. Relatively high discrepancies between the surveyed data and the predicted data about landfill gas seems to be derived from insufficient compaction of daily soil-cover, inefficient recovery of landfill gas and banning of direct landfilling of food waste in 2005. This study can be used for dissemination of information and increasing awareness about the benefits of recovering and utilizing LFG (landfill gas) and mitigating greenhouse gas emissions.